
 Palm® Developer Guide,
Palm OS® Platform

Software and Hardware

Rev. J
April 30, 2008

Usage Restrictions
Your right to access and use the following "PDN Materials" is subject to and governed by the following terms
and the terms and conditions of the Palm Developer Network Program License Agreement, available at
https://pdn.palm.com/regac/pdn/page?Page_Name=terms.

Disclaimer and Limitation of Liability
Palm, Inc. ("Palm") provides these PDN Materials as a courtesy to members of its Palm Developer Network ("PDN").

Palm provides the PDN Materials on an "AS IS" basis and does not guarantee nor assume any liability for the

accuracy or completeness of these PDN Materials, nor does Palm guarantee that the PDN Materials will be without

errors. You assume the entire risk of using the PDN Materials, including any damage or loss resulting from your

use of the PDN Materials or any loss or claims by third parties which may arise from your use of the PDN Materials.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THE PDN MATERIALS ARE PROVIDED TO YOU

ON AN "AS IS" BASIS AND WITHOUT ANY WARRANTY OF ANY KIND OR NATURE. TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW, PALM AND ITS SUPPLIERS EXPRESSLY DISCLAIM ANY IMPLIED OR

STATUTORY WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, TITLE, ACCURACY, CORRESPONDENCE WITH DESCRIPTION, SATISFACTORY QUALITY AND NON-

INFRINGEMENT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, NEITHER PALM NOR ITS SUPPLIERS SHALL BE

LIABLE FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE DAMAGES OF ANY KIND,

LOSS OF INFORMATION OR DATA, LOSS OF REVENUE, LOSS OF BUSINESS OR OTHER FINANCIAL LOSS ARISING

OUT OF OR IN CONNECTION WITH THE USE OF THE PDN MATERIALS, WHETHER BASED IN CONTRACT, TORT

(INCLUDING NEGLIGENCE), STRICT PRODUCT LIABILITY OR ANY OTHER THEORY, EVEN IF PALM HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES AND EVEN IF ANY LIMITED REMEDY IS DEEMED TO HAVE

FAILED OF ITS ESSENTIAL PURPOSE. Some countries, states, or provinces do not allow the limitation of incidental

or consequential damages so the above provisions may be limited in their application to you.

Copyright and Trademark
© 2004-2008 Palm, Inc. All rights reserved.

Palm, LifeDrive, Zire, Tungsten, Treo, Centro, Blazer, Handspring, Graffiti, HotSync, VersaMail, Palm Powered,
and Palm OS by ACCESS are among the trademarks or registered trademarks owned by or licensed to Palm, Inc.
Adobe and Acrobat are either registered trademarks or trademarks of Adobe Systems Incorporated in the
United States and/or other countries. All other brand and product names are or may be trademarks of, and are
used to identify products or services of, their respective owners.

The foregoing provisions shall be governed by the laws of the State of California and by the federal laws of the
United States, excluding their conflicts of laws provisions. The United Nations Convention on Contracts for the
International Sale of Goods (1980) is hereby excluded in its entirety from application to the foregoing provisions.
In the event any provision is found to be invalid, illegal or unenforceable, the validity, legality and enforceability
of any of the remaining provisions shall not in any way be affected or impaired.

Please read the Palm Developer Network Program License Agreement before using the PDN Materials. If you do
not agree to the terms and conditions of the Developer Network Program License Agreement, you may not
access or use the PDN Materials. USING OR ACCESSING ANY PART OF THE PDN MATERIALS INDICATES THAT
YOU ACCEPT THE TERMS OF THE DEVELOPER NETWORK PROGRAM LICENSE AGREEMENT.

Document Revision History

Date Revision Description of Changes

2004 - 2005 A Documents prior to document revisioning.

May 15, 2006 B Revisions for the Treo™ 700p smartphone.

June 29, 2006 C Revisions for Multimedia features.

November 20, 2006 D Revisions for the Treo™ 700p smartphone Rest of World
carrier release.

November 22, 2006 E Revisions for the Treo™ 680 smartphone.

April 30, 2007 F Revisions for the Treo™ 755p smartphone.

October 10, 2007 G Revisions for the Centro™ smartphone, CDMA version.

February 1, 2008 H Revisions for the Centro™ smartphone, GSM version.

April 30, 2008 J Revisions for the Centro™ smartphone, CDMA MR.

iv Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

 Palm Developer Guide, Palm OS Platform, Rev. J v

What’s New . xiii

What’s new in Centro™ smartphones .xiii

Part I: Introduction

Chapter 1: Overview . 17

1.1 How this guide is organized . 17

1.2 Typographical conventions . 18

1.3 Additional documentation and resources . 19

1.3.1 Palm® Customer Service and Support . 19

1.3.2 PDN Knowledge Base . 19

1.3.3 ACCESS® documentation . 19

1.3.4 Expansion Parts Store . 19

1.3.5 Cable and connector drawings . 19

1.4 Palm® developer marketing programs . 20

1.4.1 Designed for Palm® Products Program . 20

1.4.2 Device loaner program . 20

1.4.3 Device discount program . 20

1.5 Submitting documentation feedback . 20

Chapter 2: Quick Start Guide . 21

2.1 Introduction . 21

2.2 ACCESS® requirements . 22

2.2.1 Join the ACCESS® Developer Program . 22

2.2.2 Download the ACCESS® Palm OS® SDK . 22

2.3 Development environment . 22

2.4 Palm® requirements . 23

2.4.1 Join the Palm® Developer Network (PDN) . 23

2.4.2 Download the Palm OS® Platform SDK . 24

Chapter 3: Product Line Overview . 27

3.1 Centro™ smartphones . 27

3.1.1 What’s not supported by Centro™ smartphones 28

3.2 Treo™ smartphone product line . 29

3.2.1 What’s not supported by Treo™ smartphones 30

3.3 Tungsten™ handheld product line . 31

Contents

Contents

vi Palm Developer Guide, Palm OS Platform, Rev. J

3.3.1 What’s not supported by Tungsten™ handhelds 31

3.4 LifeDrive™ mobile manager . 32

3.4.1 What’s not supported by LifeDrive™ mobile managers 32

3.5 Zire™ handheld product line . 33

3.5.1 What’s not supported by Zire™ handhelds . 33

3.6 Hardware feature matrix . 34

3.6.1 Palm® smartphone hardware features . 34

3.6.2 Palm® handheld and LifeDrive™ mobile manager hardware features 36

3.6.3 Palm® Z22 organizer and Zire™ handhelds hardware features 37

3.7 SDIO support . 39

3.8 Software compatibility specifications (Palm® libraries) 40

3.8.1 Palm® smartphones . 40

3.8.2 Palm® handhelds, organizers, and mobile managers 42

3.9 sysExternalConnectorAttachEvent and
sysExternalConnectorDetachEvent notifications . 44

3.10 kPmConnectorClass Notifications . 44

Part II: Features and Libraries

Chapter 4: PIM SDK . 47

4.1 The PIM SDK . 47

4.2 Known issue . 47

Chapter 5: Multimedia . 49

5.1 Codec Plug-in Manager . 50

5.1.1 Codec Plug-in Manager overview . 50

5.1.2 Codec wrapping . 52

5.1.3 Codec Plug-in Manager process . 53

5.1.4 Media codec formats supported by device . 56

5.1.5 For more information . 58

5.2 Imaging . 58

5.2.1 Photo Library . 59

5.2.2 LCD Overlay . 60

5.2.3 Camera Manager . 62

5.2.4 JPEGLib, CameraLib, and ImageLib . 64

5.3 Audio . 66

5.3.1 Voice recording and sound libraries . 66

5.3.2 Tones library . 68

5.4 Video playback . 72

5.5 Streaming . 73

5.5.1 Best practices for encoding video for streaming 73

5.5.2 Known issue . 73

Contents

 Palm Developer Guide, Palm OS Platform, Rev. J vii

Chapter 6: Data Communications . 75

6.1 NetPref Library API . 75

6.1.1 Loading the library . 75

6.1.2 NetPref Library information . 77

6.1.3 NetPref panel . 77

6.2 NetMaster library API . 80

6.2.1 Usage model . 81

6.2.2 Loading the library . 82

6.2.3 Library information . 83

6.3 Email client best practices . 84

6.4 HTTP library . 85

6.4.1 Architecture . 85

6.4.2 Functional highlights . 86

6.4.3 httpErrorLibraryAlreadyOpen error message for Treo™ 680 smart-
phones . 87

6.4.4 HTTP library interface to SSL . 87

6.4.5 HTTP library use of certificates/public key infrastructure 88

6.4.6 HTTP library implementation . 88

6.4.7 General HTTP program information . 89

6.5 Net Services API . 93

6.5.1 Overview of the Net Services feature . 93

Chapter 7: HTML Library . 95

7.1 Architecture . 95

7.2 Usage model . 96

7.3 Image rendering . 97

7.4 Debugging . 97

Chapter 8: Telephony . 99

8.1 Overview of the Telephony API libraries . 99

8.1.1 CDMA and GSM libraries . 101

8.1.2 Using indicators . 102

8.1.3 Using PhnLibRegister . 103

8.1.4 Getting the Cell ID on Centro™ smartphones 103

8.1.5 PhnLibGetMMSUAString() . 104

8.1.6 PhnMsgBoxDataType . 104

8.2 Phone Application . 105

8.2.1 Phone Application 2.5 . 105

8.2.2 Phone Application 3.0 and later . 105

8.2.3 Launching the Phone application in a specific view 107

8.2.4 Launching the Phone application in Dial Pad view 108

8.2.5 Launching the Phone application in the Favorites view 110

Contents

viii Palm Developer Guide, Palm OS Platform, Rev. J

8.3 Launching the Contacts application with the New Contact window open 111

8.4 EvDO on Palm® smartphones . 112

8.4.1 Detecting EvDO vs. 1xRTT . 112

8.4.2 Troubleshooting incoming voice calls . 113

Chapter 9: SMS . 115

9.1 What is the difference between SMS and NBS? . 115

9.2 SMS library . 115

9.3 What is SMS? . 116

9.4 Why use the SMS library? . 116

9.5 Understanding the SMS library . 116

9.5.1 Incoming SMS messages and message events 117

9.5.2 Outgoing SMS messages . 118

9.5.3 Handling the GSM alphabet and Palm OS® alphabet 119

9.5.4 Message segmentation . 120

9.5.5 Message database . 121

9.6 Launching SMS from the New SMS screen . 123

Chapter 10: System Extensions . 125

10.1 Transparency API . 125

10.2 File Browser API . 127

10.3 Smart Text Engine (STE) API . 132

10.3.1 STE architecture . 133

10.4 REM Sleep API . 135

10.4.1 Normal sleep deferral . 135

10.4.2 REM sleep mode . 136

10.4.3 Detecting REM sleep mode . 137

10.4.4 LCD on/off notification . 137

10.4.5 Waking up from REM sleep mode . 139

10.5 Keyguard API . 139

10.6 Option and Shift key APIs . 140

10.7 MMS helper functions API . 141

10.7.1 MMS usage model . 141

10.7.2 MMS sample code . 142

10.8 NVFS . 144

10.8.1 Differences between NOR and NAND flash memory 147

10.8.2 Database layout on NVFS devices . 148

10.8.3 Programming on devices that have NVFS . 151

10.8.4 Optimizing your application for Palm® NVFS devices 155

10.9 5-Way Navigator and Keyboard API . 157

10.9.1 5-way navigator terminology . 157

10.9.2 Overview of 5-way navigator . 158

Contents

 Palm Developer Guide, Palm OS Platform, Rev. J ix

10.9.3 Navigation events . 158

10.9.4 Including objects as skipped objects . 159

10.9.5 Default navigation . 159

10.9.6 Custom navigation . 162

10.9.7 Focus treatment . 164

10.9.8 Navigational API, Button Mapping, and behavioral differences between
Palm smartphones and Tungsten™ T5 handhelds 165

10.9.9 Tips and troubleshooting . 178

10.10 Handspring® extensions . 180

10.11 Tips and Tutorials . 181

10.11.1 Terminology . 181

10.11.2 Content . 182

10.11.3 Tips and Tutorial structure . 182

10.11.4 Converting Tips and Tutorial content in a PRC file 192

10.11.5 Displaying Tips and Tutorial content . 193

10.11.6 Graphic element design guidelines . 194

10.12 Full-Screen Writing API . 196

10.13 Dynamic Input Area (DIA) . 197

Chapter 11: Applications . 199

11.1 Web Browser API . 199

11.1.1 How the web browser works . 200

11.1.2 Web browser feature overview . 201

11.1.3 Download manager . 203

11.1.4 Launching the web browser on Palm™ smartphones 211

11.1.5 Launching the web browser in minimal mode 212

11.2 VersaMail® application API . 213

11.2.1 Before using the VersaMail® Device APIs . 213

11.2.2 Overview of the VersaMail® Device APIs . 213

11.2.3 Adding outgoing email to VersaMail® folders 216

11.2.4 VersaMail® Font library . 219

11.2.5 VersaMail® Attachment Plug-ins API . 220

Chapter 12: Developing SDIO Applications for Palm® Handhelds 223

12.1 SD, SDIO, and MultiMediaCard specifications . 223

12.2 Palm OS® SDK . 224

12.3 Software architecture of an SDIO application . 224

12.3.1 Expansion Manager . 225

12.3.2 VFS Manager . 225

12.3.3 SDIO slot driver . 226

12.3.4 Notification Manager . 226

12.4 Guidelines for SDIO applications . 226

12.4.1 Power management . 227

Contents

x Palm Developer Guide, Palm OS Platform, Rev. J

12.4.2 Interrupt handling . 228

12.4.3 Detecting card insertion and removal . 228

12.4.4 Auto Run . 229

12.5 Developing the SDIO peripheral . 229

12.5.1 Specifications . 229

12.5.2 SDIO slot driver . 230

12.5.3 SDIO card initialization and identification on Palm OS 230

12.5.4 Code Storage Area (CSA) . 231

Part III: Debugging

Chapter 13: Debugging . 235

13.1 Overview . 235

13.1.1 Hardware requirements . 235

13.1.2 Simulator vs. on-device debugging . 235

13.1.3 Debugger modes . 236

13.2 Simulators and emulators . 238

13.2.1 What's the difference? . 238

13.2.2 Where can I get them? . 238

13.2.3 Palm OS simulators and emulators . 239

13.2.4 Release Simulator . 239

13.2.5 Debug Simulator . 242

13.3 DebugPrefs . 243

13.3.1 Checkbox settings . 243

13.3.2 Button options . 245

13.4 Metrowerks CodeWarrior . 246

13.4.1 Simulator debugging using CodeWarrior . 247

13.4.2 On-device debugging using CodeWarrior . 248

13.4.3 CodeWarrior debugging troubleshooting tips 249

13.5 PalmDebugger . 250

13.5.1 Source level debugging . 251

13.5.2 Post-crash debugging . 251

13.5.3 Common PalmDebugger commands . 252

13.5.4 Using PalmDebugger to import and export files 253

13.5.5 PalmDebugger tips . 254

13.6 Garnet OS Developer Suite . 255

13.7 Resets . 256

13.7.1 Soft Reset . 256

13.7.2 Warm Reset . 256

13.7.3 Hard Reset . 256

13.7.4 Factory Reset . 257

Contents

 Palm Developer Guide, Palm OS Platform, Rev. J xi

Part IV: Style Guide

Chapter 14: Style Guide . 261

14.1 Designing pages for the Blazer® web browser . 261

14.1.1 General rules for web page design . 261

14.1.2 Screen resolution . 262

14.1.3 Connection speed . 262

14.1.4 Content . 262

14.1.5 Working with the Blazer® web browser . 273

14.1.6 Testing your website . 275

14.1.7 International support . 275

14.1.8 List of acronyms . 276

14.1.9 Palm OS® integration tags . 277

14.2 Gadgets . 279

14.2.1 Required headers and libraries . 279

14.2.2 Overlapping gadgets in Treo™ 680 . 279

14.2.3 How to include the Battery gadget . 279

14.2.4 How to include the Signal gadget . 280

14.2.5 How to include the Bluetooth® wireless technology gadget 280

Part V: Hardware Developers Kit

Chapter 15: Multi-connector Specifications . 283

15.1 Overview . 283

15.2 Pinout of the Multi-connector . 284

15.2.1 USB . 286

15.2.2 Serial interface hardware . 286

15.2.3 Serial interface software . 287

15.2.4 HotSync® interrupt hardware . 288

15.2.5 HotSync® interrupt software . 288

15.2.6 Power output . 288

15.2.7 Audio detection . 289

15.2.8 Audio output . 289

15.3 Peripheral requirements . 290

15.3.1 Audio peripherals . 291

15.3.2 General serial peripherals . 291

15.4 Peripheral detection . 292

15.4.1 Class-level detection . 292

15.4.2 Audio peripheral detection timing diagrams 294

15.4.3 Serial peripheral detection timing diagram . 295

15.4.4 Peripheral detection timing specifications . 295

15.5 Interfacing with an audio peripheral . 296

Contents

xii Palm Developer Guide, Palm OS Platform, Rev. J

15.6 Interfacing with a serial peripheral . 298

15.6.1 Electrical diagram of a serial peripheral . 299

15.6.2 Serial peripheral design guidelines . 300

15.7 Serial Peripheral Usage . 301

15.7.1 Serial support on the Multi-connector interface 301

15.7.2 How to use the serial port . 301

15.7.3 Multi-connector peripheral attach and detach notifications 301

15.7.4 Known Issues . 302

15.7.5 Coding example . 303

15.7.6 Serial peripheral detection . 304

15.7.7 Connector library (PmConnectorLib) . 305

15.7.8 Serial HotSync . 307

15.7.9 Known Issues . 307

15.8 Interfacing with Smart serial peripherals . 308

15.8.1 Smart serial peripheral handshaking process 308

Chapter 16: Headset Jack Specifications . 315

16.1 Overview . 315

16.1.1 Standard 2.5mm cell phone headset (3-pin) 316

16.1.2 Stereo headphones (3-pin, 2.5mm or 3.5mm via adapter) 316

16.1.3 (Custom) Combination headphone/headset (4-pin, 2.5mm) 316

16.2 Stereo audio accessories . 317

16.3 Microphones . 318

16.4 Speaker Architecture . 319

16.5 Usage scenarios . 321

16.5.1 Treo™ 600 smartphones . 321

16.5.2 Treo™ 650 smartphones and later . 324

Chapter 17: External Hardware Drawings . 325

17.1 Palm™ devices . 325

17.2 Expansion Parts Store . 325

17.3 Cable and connector drawings . 325

Part VI: Appendix

Appendix A: Sample Code . 329

Index . 335

 Palm Developer Guide, Palm OS Platform, Rev. J xiii

What’s New

This section provides an overview of new features and product developments that
have been implemented since the last revision of this guide.

Overall, the current revision of this document (Rev. J) reflects updates to features and
specifications for the Palm® Centro™ smartphone maintenance release, CDMA radio
version.

Specifically, the following items have been added or updated in the current revision
of the Palm Developer Guide, Palm OS Platform:

■ Added information on JPEGLib, CameraLib, and ImageLib to Section 5.2.4 on
page 64.

■ Added information on getting the Cell ID for Centro CDMA smartphones to
Section 8.1.4.2 on page 103.

■ Added information on a Verizon-specific API, PhnLibGetMMSUAString(), to
Section 8.1.5 on page 104.

■ Added information on a Verizon-specific priority field, PhnMsgBoxDataType, to
Section 8.1.6 on page 104.

■ Corrected code sample in Section 8.2.4.2 on page 108.

■ Added information on resets to Section 13.7 on page 256.

What’s new in Centro™ smartphones
The Centro smartphone is the newest addition to Palm’s line of smartphone products.
Centro is Palm’s smallest form factor smartphone to date, and is available in two
radio versions, CDMA and GSM:

■ The Centro for GSM networks is a quad-band GSM/GPRS/EDGE world device, and
is based on the Treo 680 base applications.

■ The Centro for CDMA networks is a dual band 1xRTT/EvDO device, and is based
on the Treo 755p base applications.

Hardware features for both GSM and CDMA versions include:

■ Smaller removable battery (1150mAh)

■ 64MB of RAM, and 64MB of NAND Flash

■ Support for microSD cards of up to 4GB (no SDIO support)

■ New color form factors vary by carrier.

The Centro smartphone runs on Palm OS® 5.4.9 by ACCESS. Centro also includes on-
device registration and over-the-air (OTA) download of bonus software using
MyCentro. For complete hardware and software specifications, see Chapter 3.

The latest header files are available as part of the Palm OS Platform SDK 5.6.
Download the SDK from the Palm Developer Network website today.

What’s New

xiv Palm Developer Guide, Palm OS Platform, Rev. J

New Cell ID APIs
For Centro GSM and CDMA smartphones, new APIs are available that will allow
developers to retrieve the Cell ID (also known as the Cell of Origin, or COO) of a
phone. For details, refer to Section 8.1.4 on page 103.

 Palm Developer Guide, Palm OS Platform, Rev. J xv

PART I

Introduction

This part of the guide details the overview of the Developer Guide, discusses the
steps required to get started developing applications for the Palm OS platform, and
includes an overview of the Palm® product line.

xvi Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

 Palm Developer Guide, Palm OS Platform, Rev. J 17

CHAPTER 1

1. Overview

This chapter discusses how this Developer Guide is organized, the typographical
conventions used in this guide, where to find more documentation and resources,
and introduces Palm developer marketing programs.

1.1 How this guide is organized
This guide contains an overview of products that use the Palm OS by ACCESS,
including Palm® Centro™ and Treo™ smartphones, LifeDrive™ mobile managers,
and Tungsten™, and Zire™ handhelds. This guide also includes hardware
specifications for each device and a matrix that identifies the software features
available on each device.

The libraries discussed in this guide are organized by general category, such as
Multimedia Libraries and Application Libraries.

In addition to the discussion of the libraries, this guide contains debugging
information for troubleshooting problems on Palm devices, as well as style
conventions for how certain features should be used. It also includes coding
examples and specific references to more information in the Palm API Guide, Palm
OS Platform.

Specifically, the Developer Guide is organized in the following chapters:

■ Chapter 1 - The Overview chapter includes information on how this document is
organized, typographical conventions used in this guide, where to find more
documentation, and information on Palm developer programs.

■ Chapter 2 - The Quick Start Guide explains how to set up your development
system in order to write software applications for Palm devices on the Palm OS
platform by ACCESS, including ACCESS and Palm requirements.

■ Chapter 3 - The Product Overview chapter describes the differentiating software
features of Treo smartphones, as well as other Palm mobile managers and
handheld devices. It also describes the tools, interfaces, and libraries of the SDK,
and hardware specifications by device.

■ Chapter 4 - This chapter describes the separate PIM SDK and how to use its
database structures to include PIM features in your applications.

■ Chapter 5 - The Multimedia chapter describes multimedia features and formats
used by device.

■ Chapter 6 - The Data Communications chapter includes information on the data
communication features and APIs, including the NetPref library, NetMaster
library, HTTP library, the NetServices API, and basic email best practices.

Chapter 1 Overview

18 Palm Developer Guide, Palm OS Platform, Rev. J

■ Chapter 7 - This chapter provides reference information on the HTML library,
including its usage model, architecture, and features.

■ Chapter 8 - The Telephony chapter provides reference material for the Telephony
APIs in the Palm OS SDK.

■ Chapter 9 - The SMS chapter describes the SMS library usage model.

■ Chapter 10 - The System Extensions chapter provides details about the system
extension features and APIs available in the Palm OS SDK from Palm, Inc. These
features are differentiations from the SDK from ACCESS.

■ Chapter 11 - The Applications chapter details the features and APIs available in
some of the Palm applications.

■ Chapter 12 - The SDIO chapter provides information on writing Palm OS
applications that interact with SDIO hardware.

■ Chapter 13 - The Debugging chapter details how to debug problems with Palm
APIs using tools and utilities available for Palm smartphones.

■ Chapter 14 - The Style Guide chapter outlines guidelines to follow when
developing applications that work with the Blazer web browser.

■ Chapter 15 - This chapter defines the interfaces and interactions of the Palm
expansion Multi-connector, also known as the Athena connector, and its
surrounding circuits and controlling software.

■ Chapter 16 - This chapter defines the interface and interactions of the headset jack
and its surrounding circuits and controlling software.

■ Chapter 17 - This chapter explains where to find external hardware drawings for
Palm devices and peripherals.

■ Appendix A - The Sample Code Appendix includes a listing and description of
each sample application available in the Palm SDK.

1.2 Typographical conventions
This guide uses the following typographical conventions:

■ API names - API names and associated parameters are formatted in the Courier
font.

■ Directory paths - Directory paths are shown in italics.
■ Navigational Steps - Navigational steps through web site menus or other GUI

features of applications are formatted in Bold font with arrows (>) between steps.
■ Sample Code - Sample Codes used in this guide as examples of using specific

APIs are formatted in the Courier font and set apart from other text.
■ URLs - URLs are in bold font and underlined, for example: http://www.palm.com.

Additional documentation and resources

 Palm Developer Guide, Palm OS Platform, Rev. J 19

1.3 Additional documentation and resources

1.3.1 Palm® Customer Service and Support
User Manuals, support information, and other documentation on Palm OS-based
devices can be found at the Palm Customer Service and Support website,
http://www.palm.com/us/support/.

1.3.2 PDN Knowledge Base
For a searchable collection of Frequently Asked Questions, visit the PDN website at
http://pdn.palm.com. When you join the program and log in, click the Knowledge
Base link on the navbar. Use the pull-down menus to sort for Palm OS platform-
specific issues.

The PDN Knowledge Base is updated with new Answers on a monthly basis.

1.3.3 ACCESS® documentation
For information on Palm OS programming, ACCESS Co LTD (formerly PalmSource)
provides the Palm OS Programmer’s Companion and the Palm OS Programmer’s API
Reference. Join the ACCESS Developer Network, and find these documents at the
following URL:

http://www.access-company.com/developers/documents/palmos/
palmos.html

1.3.4 Expansion Parts Store
The Expansion Parts Store, hosted by Northstar Systems, offers PDN software and
hardware developers development kits (including hardware drawings) for the
creation of peripherals for Palm products. Supported devices currently include Treo
650 smartphones, Tungsten T5, and many other handheld and mobile manager
devices. The Northstar site includes information on connectors, cables, modem
housings, handheld plastics, as well as SDIO and Bluetooth development tools.

To find the link to the Expansion Parts Store, log into PDN, then use the side
navigation menu to go to develop > get devices > parts.

1.3.5 Cable and connector drawings
ATL Technologies manufactures cable assemblies and connector systems used with
Palm devices. At their website, ATL provides external hardware drawings in PDF
format for peripherals including the USB sync cable, power cable, Multi-connector,
and a charging cradle.

To find the link to ATL Technologies, log into PDN, then use the side navigation menu
to go to develop > get devices > parts.

http://www.access-company.com/developers/documents/palmos/palmos.html

Chapter 1 Overview

20 Palm Developer Guide, Palm OS Platform, Rev. J

1.4 Palm® developer marketing programs
For more information on all Palm marketing and sales programs, visit the Palm
Developer Network (PDN) website and select Market from the navbar.

1.4.1 Designed for Palm® Products Program
The Designed for Palm Products (DFPP) Logo Program is Palm's compatibility and
logo program for mobile application developers. Developers participate in the
program by submitting applications for compatibility testing done by a third party
testing facility, and upon passing, receive use of the Palm logo and other exclusive
marketing benefits.

For complete program details and benefits, go to PDN at https://pdn.palm.com.
Then, from the navbar on the left side of the PDN home page, select
Market > Designed for Palm Products program.

Here, you will find the Designed for Palm Product Program Datasheet and complete
details on how to apply for and prepare your applications for the DFPP program.

1.4.2 Device loaner program
As part of our effort to support the growth and evolution of Palm products, Palm is
pleased to provide developers with the opportunity to borrow Palm devices. PDN
Program members can use these loaner devices to develop, troubleshoot, test, port,
and market applications that leverage Palm technology. It’s our goal to provide
programs that encourage support of Palm technology by connecting developers to
the tools they need.

For more information on the Device Loaner Program, go to PDN and from the navbar,
select Market > Device loaner program.

1.4.3 Device discount program
Palm is happy to offer our PDN developers discounts on products through the Palm
devices and handheld stores.

For current offers, go to PDN and from the navbar, select Market > Device discount
program.

1.5 Submitting documentation feedback
In order to better support the Palm developer community, the Technical Publications
team is interested in your feedback about this guide or other Palm Developer
Network (PDN) documentation. To submit questions, comments, or documentation
requests, send email to Developer.Publications@palm.com. Include the
document title as well as specific section numbers, as necessary.

Please do not submit inquiries unrelated to documentation issues.

mailto:Developer.Publications@palm.com
https://pdn.palm.com

 Palm Developer Guide, Palm OS Platform, Rev. J 21

CHAPTER 2

2. Quick Start Guide

This chapter gives instructions on how to begin developing applications for devices
running Palm® OS by ACCESS® Systems America (formerly PalmSource). It details
the required components from ACCESS and Palm®, Inc. and how to set up your
development environment. It also explains the contents of the SDK from Palm, Inc.

2.1 Introduction
With its focus on the mobile user, Palm OS was designed from the beginning for
mobile computing, and provides a flexible, easy-to-use, and compatible
development platform.

Leading the mobile computing revolution since the introduction of the first Palm Pilot
in 1996, Palm OS by ACCESS provides the largest selection of mobile software in the
world. The Palm OS platform gives users the ability to control all of their mobile
information, communication, and entertainment needs, no matter where their lives
take them.

Components from both ACCESS and Palm, Inc. make up the required tools for
developers to begin writing applications for devices running Palm OS:

■ The Garnet OS SDK from ACCESS (Palm OS 5.x) provides a generic platform for
developing applications that run on the Palm OS platform.

■ The Palm OS SDK from Palm, Inc. provides Palm device-specific differentiations to
the generic Garnet OS SDK. To develop applications that run on specific Palm
handhelds, mobile managers, and smartphones, you will need the Palm OS SDK
from Palm, Inc.

NOTE: The Garnet OS SDK is required. Palm no longer supports the Cobalt OS SDK
from ACCESS.

The following sections describe the steps required to begin developing applications
for devices running Palm OS.

Chapter 2 Quick Start Guide

22 Palm Developer Guide, Palm OS Platform, Rev. J

2.2 ACCESS® requirements

2.2.1 Join the ACCESS® Developer Program
To download the latest Core Garnet OS SDK from ACCESS Co. LTD. (formerly
PalmSource), you will first need to register for the ACCESS Developer Network at the
following URL:

http://www.access-company.com/developers/

2.2.2 Download the ACCESS® Palm OS® SDK
From the ACCESS Developer Network, you will be able to download tools to set up
your development environment and the latest Core Garnet OS SDK. The Garnet OS
SDK includes headers files, documentation, and samples necessary to begin
application development, but does not include any device-specific differentiations
from Palm, Inc. For the Palm, Inc. SDK, see Section 2.4 on page 23.

IMPORTANT: The Garnet OS SDK does not include a build environment, nor does it
include any device differentiations from Palm, Inc.

Next, from the ACCESS Developer Network:

1. Download and install the Garnet OS SDK (68K) R3.

2. Download and install the latest version of the Garnet OS 68K API SDK, which is an
update to the Garnet SDK.

For more information and getting started tips on the Palm OS platform, see
http://www.access-company.com/developers/start.html.

2.3 Development environment
The next step is to set up your integrated development environment (IDE). To develop
applications for devices running Palm OS, you will need to acquire one or more of
the following tools:

■ Garnet OS Developer Suite - The Garnet OS Developer Suite from ACCESS
runs under Microsoft Windows and is based on Eclipse, so most of its code runs
in the Java Virtual Machine (JVM). The Garnet OS Developer Suite allows
developers to build both Protein applications (all ARM-native code) for Palm OS
Cobalt, and 68K applications for all versions of the Palm OS currently shipping.
Download the Palm OS Developer Suite from the ACCESS Developer Network:

http://www.access-company.com/developers/

NOTE: The Garnet OS Development Suite includes the Garnet OS SDK.

■ PRC-Tools - PRC-Tools is a freeware complete compiler tool for building Palm OS
applications in C or C++. PRC-Tools includes GNU packages, GCC, binutils, GDB,
and other post-linker tools. A link to PRC-Tool resources can be found at the
ACCESS Developer Network.

http://www.access-company.com/developers/

Palm® requirements

 Palm Developer Guide, Palm OS Platform, Rev. J 23

■ CodeWarrior Development Studio for Palm OS Platform - Metrowerks
CodeWarrior, available for Windows and Mac OS, is a complete programming tool
for the Palm OS platform. CodeWarrior is available at the following URL:

http://www.freescale.com/webapp/sps/site/
homepage.jsp?nodeId=012726

When you have installed CodeWarrior, make sure that the Garnet OS SDK headers
and libraries are installed at C:\ProgramFiles\Metrowerks\CodeWarrior\Palm OS
Support. You may install the Palm OS SDK from Palm, Inc. in any directory, as long
as the headers and libraries used in your application link to the correct location.

NOTE: To use CodeWarrior for Palm OS development, you will need to use the Palm
OS Support version of the Garnet OS Developer Suite.

2.4 Palm® requirements
To develop applications specific to Palm handheld, mobile manager, and smartphone
devices, you will need to download and install the Palm OS SDK from Palm, Inc. You
will also need to link your applications to the headers and libraries provided in the
Palm OS SDK, which includes all feature differentiations from the generic Garnet OS
SDK from ACCESS.

2.4.1 Join the Palm® Developer Network (PDN)
The Palm Developer Network (PDN) from Palm, Inc., located at http://pdn.palm.com,
is a website resource for mobile hardware and software developers creating
prosumer, enterprise, and services solutions targeting Palm devices who want to
increase their solution sales, profitability and brand value.

PDN is a comprehensive mobile solution community developer program that offers
developers a broad set of services that help you build your business with Palm –
quickly and easily. PDN was designed by developers for developers, and offers a
comprehensive set of technical, marketing, and sales services designed to help
mobile solutions developers move rapidly from concept to market with reduced cost
and complexity.

For registered members of PDN, the website provides resources including:

■ Palm SDKs

■ Simulators/Emulators

■ Debugging tools

■ Documentation

■ Knowledge Base of developers’ frequently asked questions. (For more
information, see Section 1.3.2 on page 19.)

■ Developer community forums

■ Newsletter

■ Information on the Palm Device Loaner Program

■ Information on the Designed for Palm Products (DFPP) Compatibility Logo
Program. (For more information, see Section 1.4.1 on page 20.)

For complete details on PDN, visit http://pdn.palm.com.

http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeId=012726
http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeId=012726
http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeId=012726

Chapter 2 Quick Start Guide

24 Palm Developer Guide, Palm OS Platform, Rev. J

2.4.2 Download the Palm OS® Platform SDK
The latest Palm OS Platform SDK from Palm, Inc. is available for download from PDN
at http://pdn.palm.com.

IMPORTANT: Before using Palm, Inc.’s Palm OS SDK, you must download the
current ACCESS® Palm OS SDK, which is discussed in Section 2.2.2 on page 22.

The Palm, Inc. Palm OS SDK includes:

■ Header Files - Palm-specific header files are required in addition to the header
files provided by the ACCESS SDK. Header files are generally updated with each
product launch.

■ Documentation:

– Palm Developer Guide, Palm OS Platform - The Palm Developer Guide,
Palm OS Platform (this document) is the comprehensive guide to software and
hardware development for all Palm devices on the Palm OS platform. The
Developer Guide is generally updated for each major product launch.

– Palm API Guide, Palm OS Platform - In the past, detailed documentation
on API functions and structures was included in the Developer Guide.
Complete API documentation is now generated directly from Palm source code
and presented in a separate document. Refer to the Palm API Guide, Palm OS
Platform in compressed HTML format (.chm) on the PDN as part of the SDK
download.The API Guide is updated for each SDK build.

– Application Notes - When relevant, Application Notes on specific developer
issues are generated between SDK releases and Developer Guide revisions.
Therefore, they are generally the most up to date source of information.

– Training Presentations - Training presentations by Palm engineers are
posted on PDN on topics such as new devices and debugging.

■ Sample Code - The Sample Code section of the Palm OS Platform SDK is used
to illustrate concepts and API usage, allowing developers to grasp basic and
complicated ideas quickly. For more information about Sample Code,
see Appendix A.

■ Debugging Tools and Utilities - Debugging tools and utilities provided in the
Palm OS SDK include:

– PalmDebugger

– PPP Tracer

– TraceViewer

– MemoryInfo

– DebugPrefs.c.

For more information on Debugging, see Chapter 13.

■ Simulators/Emulators - A simulator is provided for each individual product at
the Palm Developer Network (PDN) on that product's page. (Palm OS platform-

Palm® requirements

 Palm Developer Guide, Palm OS Platform, Rev. J 25

specific simulators are provided by ACCESS, but they do not include any of Palm’s
device differentiations.) Generally, simulators are not updated, but new
simulators are made available with each maintenance release.

The Palm OS Platform SDK is updated with every product launch or announcement.
The SDK is versioned using the following X.Y.Z method:

■ X is incremented if a major change/addition occurs.

■ Y is incremented when a new product is released or announced.

■ Z is incremented when a change is made to the SDK that does not warrant an X or
a Y change.

Chapter 2 Quick Start Guide

26 Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

 Palm Developer Guide, Palm OS Platform, Rev. J 27

CHAPTER 3

3. Product Line Overview

This chapter provides an overview of Palm® smartphones, Tungsten™ handhelds,
Zire™ handhelds, and the LifeDrive™ mobile manager, as well as a high-level
description of the features available in each product line. A hardware features table
illustrates the hardware and electrical specifications of each model, and a software
features table illustrates the specific features and APIs that apply to each device.

3.1 Centro™ smartphones
The Centro smartphone by Palm is an entry-level compact smartphone that
integrates a mobile phone, SMS and MMS messaging, web browsing, and a Palm
organizer. Centro is the smallest Palm form factor to date.

Centro smartphones are available in two radio versions, GSM and CDMA, with the
following specifications:

1. GSM - Centro smartphones feature a quad-band GSM/GPRS/EDGE world radio on
the following frequencies:
– 850MHz (NA band)

– 900MHz (EU/Asia band)

– 1800MHz (EU/Asia band)

– 1900MHz (NA band)

2. CDMA - Centro smartphones feature a dual-band CDMA/1xRTT/EvDO nationwide
radio on the following frequencies:

– 800MHz (Cellular band)

– 1900MHz (PCS band)

One of the key differentiators of the Centro smartphone is the integration of the main
applications and the user interface, which makes applications easy to use.

Software applications included vary by carrier. Additional applications may be
available by carrier and via Over the Air (OTA) download.

The Centro smartphone includes support for microSD cards up to 4GB (no SDIO
support).

For a complete list of Centro smartphone hardware specifications, see Section 3.6.1

on page 34.

For a complete list of Palm software libraries compatible with Centro smartphones,
see Section 3.8.1 on page 40.

Chapter 3 Product Line Overview

28 Palm Developer Guide, Palm OS Platform, Rev. J

3.1.1 What’s not supported by Centro™ smartphones
Centro smartphones use Palm OS® version 5.4.9 by ACCESS. However, as each
licensee can choose to implement only certain features of the operating system as it
applies to its product, Palm implements certain features and not others.

Centro smartphones do not support:

■ INet library

Palm has never supported the INet library, contained in the header file
INetMgr.h, or ported it to Palm products.

■ Lz77Mgr.h header file

■ SmsLib.h header file

Centro smartphones have their own SMS library. The Centro SMS library supports
the Exchange Manager.

■ Telephony Manager

Centro smartphones have their own Phone library. The telephony header files
TelephonyMgr.h, TelephonyMgrTypes.h, and TelephonyMgrUI.h are not
supported for Centro smartphones.

■ Fax services are not supported by Centro smartphones.

Centro smartphones do not include the zLib that was included in the Treo 600
smartphone. A version of this library can be found at:
http://www.copera.com/zlib-armlet/.

http://www.copera.com/zlib-armlet/

Treo™ smartphone product line

 Palm Developer Guide, Palm OS Platform, Rev. J 29

3.2 Treo™ smartphone product line
The Treo by Palm is a family of compact smartphones that integrates a mobile phone,
wireless data applications such as messaging and web browsing, and a
Palm OS® organizer.

Treo smartphones are available in two radio versions, GSM and CDMA, with the
following specifications:

1. GSM - Treo 600, Treo 650, and Treo 680 smartphones feature a quad-band GSM/
GPRS/EDGE world radio on the following frequencies:
– 850MHz (NA band)

– 900MHz (EU/Asia band)

– 1800MHz (EU/Asia band)

– 1900MHz (NA band)

2. CDMA
– Treo 600 and Treo 650 smartphones feature a dual-band CDMA/1xRTT

nationwide radio on the following frequencies:

● 800MHz (Cellular band)

● 1900MHz (PCS band)

– Treo 700p and Treo 755p smartphones feature a dual-band CDMA2000/1xRTT/
EvDO nationwide radio on the following frequencies:

● 800MHz (Cellular band)

● 1900MHz (PCS band)

One of the key differentiators of the Treo smartphone is the integration of the main
applications and the user interface, which makes applications easy to use. Most
applications are common to both versions of the Treo smartphone, GSM and CDMA,
and they include:

■ Phone application

■ SMS messaging

– GSM - SMS messages can be received and sent

– CDMA - SMS services may or may not be offered and supported by the carrier

■ MMS

– GSM - All GSM phones include MMS

– CDMA - Only Sprint and Verizon phones include MMS - Rest of World (ROW)
release phones do not include MMS

■ Proxyless Blazer® web browser supporting direct download of ring tones,
applications, and documents

■ Photo capture application

■ Email applications are available, but the type of application varies by carrier

■ Palm OS® organizer applications, such as Calendar, Contacts, Tasks, and Memos

■ Music playback capability on Treo 650, Treo 680, Treo 700p, and Treo 755p
smartphones

Chapter 3 Product Line Overview

30 Palm Developer Guide, Palm OS Platform, Rev. J

■ Streaming Audio and Video applications on Treo 680, Treo 700p, and Treo 755p
smartphones

■ Bluetooth 1.2 for Treo 700p ROW and Treo 755p smartphones, which resolves car-
kit compatibility issues that caused the Bluetooth (ACL) connection between the
Treo 700p and Treo 755p smartphone and the car-kit to drop.

NOTE: Some applications are applicable only to the GSM or CDMA version. Treo
smartphones might also be configured differently depending on the carrier.

For a complete list of Treo smartphone hardware specifications by device, see
Section 3.6.1 on page 34.

For a complete list of Palm software libraries compatible with Palm OS-based Treo
smartphones, see Section 3.8.1 on page 40.

3.2.1 What’s not supported by Treo™ smartphones
Treo smartphones use Palm OS® version 5.x by ACCESS. However, as each licensee
can choose to implement only certain features of the operating system as it applies
to its product, Palm implements certain features and not others.

Treo smartphones do not support:

■ INet library

■ Palm has never supported the INet library, contained in the header file
INetMgr.h, or ported it to Palm products.

■ Lz77Mgr.h header file

■ SmsLib.h header file

■ Treo smartphones have their own SMS library. The Treo SMS library supports
the Exchange Manager.

■ Telephony Manager

■ Treo smartphones have their own Phone library. The telephony header files
TelephonyMgr.h, TelephonyMgrTypes.h, and TelephonyMgrUI.h are not
supported in Treo smartphones.

■ Fax services are not supported by Treo smartphones.

■ Treo 650, Treo 680, Treo 700p, and Treo 755p smartphones do not include the zLib
that was included in the Treo 600 smartphone. A version of this library can be
found at: http://www.copera.com/zlib-armlet/.

http://www.copera.com/zlib-armlet/

Tungsten™ handheld product line

 Palm Developer Guide, Palm OS Platform, Rev. J 31

3.3 Tungsten™ handheld product line
Devices in the Tungsten product line are designed to target the power business user.
Tungsten handhelds provide easy, reliable access to business data, as well as
seamless integration with the desktop business environment. Tungsten handhelds
provide a large, easy-to-read display, compatibility with the most popular business
applications, a large amount of storage (which is not lost when battery power is
depleted), and powerful organization and search functions. Some models of
Tungsten handhelds also enable the user to mount the handhelds as a drive on a
compatible PC.

For a complete list of Tungsten hardware specifications by device, see Section 3.6.2

on page 36.

For a complete list of Palm libraries compatible with Tungsten handhelds, see
Section 3.8.2 on page 42.

3.3.1 What’s not supported by Tungsten™ handhelds
Tungsten handhelds use Palm OS version 5.x by ACCESS. However, as each licensee
can choose to implement only certain features of the operating system as it applies
to its product, Palm implements certain features and not others.

Tungsten handhelds do not support:

■ INet library

Palm has never supported or ported the INet library, contained in the header file
INetMgr.h, to its products.

■ Lz77Mgr.h header file

Chapter 3 Product Line Overview

32 Palm Developer Guide, Palm OS Platform, Rev. J

3.4 LifeDrive™ mobile manager
The LifeDrive mobile manager lets users keep track of schedules, business and
personal contacts, to-do lists, and even Microsoft Office and multimedia files.
LifeDrive mobile manager also offers a 4GB hard drive that lets users carry files and
hours of music, photos, and videos. Users can transfer information in real time
between the device and their computer and, on a Windows computer, select which
files and folders to synchronize. Users can import photos and videos from a digital
camera’s memory card, or connect wirelessly to a Wi-Fi network.

LifeDrive mobile manager is the first Palm device to use a hard drive for memory
(storage). LifeDrive mobile manager’s hard drive changes some of the basic
assumptions that Palm OS applications typically make about the speed of various
operations. Not only does it use DBCache (introduced in NVFS devices), but
developers should also consider the following performance issues:

■ If the drive is automatically turned off (after ten seconds of inactivity, meaning no
active writes or reads to/from the drive), the system stalls for one or two seconds
while the drive spins up again.

■ Whenever the heads of the drive are over the platters, the hard drive is susceptible
to damage from drops. The heads are over the platters during every read and
write operation and remain there until there have been about two seconds of no
read/write activity.

For a complete list of LifeDrive hardware specifications by device, see Section 3.6.2

on page 36.

For a complete list of Palm libraries compatible with LifeDrive mobile managers, see
Section 3.8.2 on page 42.

3.4.1 What’s not supported by LifeDrive™ mobile managers
LifeDrive mobile managers use Palm OS version 5.x by ACCESS. However, as each
licensee can choose to implement only certain features of the operating system as it
applies to its product, Palm implements certain features and not others.

LifeDrive handhelds do not support:

■ INet library

Palm has never supported or ported the INet library, contained in the header file
INetMgr.h, to its products.

■ Lz77Mgr.h header file

Zire™ handheld product line

 Palm Developer Guide, Palm OS Platform, Rev. J 33

3.5 Zire™ handheld product line
Devices in the Zire product line are designed to target the consumer who wants an
easy-to-use handheld that is ready out of the box and useful in both a personal and
business environment. Zire handhelds leverage MP3 capability, a color screen, and
expandibility to appeal to casual technology users interested in value, as well
as savvy young technology users interested in style and the latest functionality.

For a complete list of Zire hardware specifications by device, see Section 3.6.3 on

page 37.

For a complete list of Palm software libraries compatible with Zire handhelds, see
Section 3.8 on page 40.

3.5.1 What’s not supported by Zire™ handhelds
Zire handhelds use Palm OS version 5.x by ACCESS. However, as each licensee can
choose to implement only certain features of the operating system as it applies to its
product, Palm implements certain features and not others.

Zire handhelds do not support:

■ INet library

Palm has never supported or ported the INet library, contained in the header file
INetMgr.h, to its products.

■ Lz77Mgr.h header file

Chapter 3 Product Line Overview

34 Palm Developer Guide, Palm OS Platform, Rev. J

3.6 Hardware feature matrix

3.6.1 Palm® smartphone hardware features
Feature Treo 600 Treo 650 Treo 680 Treo 700p Treo 755p Centro

Processor

Type TI OMAP 310 ARM Intel XScale PXA270
ARM

Intel XScale PXA270
ARM

Intel XScale PXA270
ARM

Intel XScale PXA270
ARM

Intel Bulverde ARM

Speed 144MHz 312MHz 312MHz 312MHz 312MHz 312Mhz

Memory

RAM 32MB 32MB 64MB 32MB 32MB 64MB

NAND Flash User
Store

N/A 32MB 64MB 64MB 64MB 64MB

Battery

Type Rechargeable
Lithium Ion

Rechargeable
Lithium Ion

Rechargeable
Lithium Ion

Rechargeable
Lithium Ion

Rechargeable
Lithium Ion

Rechargeable
Lithium Ion

mAh 1800 1900 1200 1800 1600 1150

Standby or use time up to 300 hours GSM/GPRS - up to
300 hours
CDMA - up to 336
hours

up to 300 hours up to 300 hours up to 300 hours GSM - up to 300 hours
CDMA - up to 250
hours

Talk time up to 6 hours up to 6 hours up to 4 hours up to 4.5 hours up to 4.5 hours GSM - up to 4 hours
CDMA - up to 3.3 hours

Removable No Yes Yes Yes Yes Yes

Form factor

Size 4.41" x 2.36"
x .87" without
antenna

4.41" x 2.36"
x .87" without
antenna

4.4" x 2.3"
x .8" internal antenna

4.4" x 2.3"
x .9" without
antenna

4.4” x 2.3”
x .8" internal antenna

4.2” x 2.1”
x .73”internal antenna

5-way button Yes Yes Yes Yes Yes Yes

Grafitti None None None None None None

Keyboard Built-in QWERTY
keyboard

Built-in QWERTY
keyboard

Built-in QWERTY
keyboard

Built-in QWERTY
keyboard

Built-in QWERTY
keyboard

Built-in QWERTY
keyboard

Hardware feature matrix

 Palm Developer Guide, Palm OS Platform, Rev. J 35

* For the current list of carriers included in the Treo 700p ROW release, visit the Palm Developer Network (PDN) at
http://pdn.palm.com and navigate to the Treo 700p device page.

Display

Resolution 160 x 160 pixels 320 x 320 pixels,
186 DPI

320 x 320 pixels,
186 DPI

320 x 320 pixels,
186 DPI

320 x 320 pixels,
186 DPI

320 x 320 pixels
186 DPI

Density 16-bit (65,536 colors) 16-bit (65,536 colors) 16-bit (65,536 colors) 16-bit (65,536 colors) 16-bit (65,536 colors) 16-bit (65,536 colors)

Wireless

CDMA or GSM/GPRS CDMA/1xRTT or
GSM/GPRS/EDGE,
Bluetooth® 1.1

Quad-band GSM/
GPRS/EDGE (850/
900/1800/1900)
Bluetooth® 1.2

CDMA/1xRTT/EvDO
Bluetooth®
- Sprint and Verizon,
Bluetooth® 1.2
- Rest of World*,
Bluetooth® 1.2 with
patch

CDMA/1xRTT/EvDO
Bluetooth® 1.2 with
patch

CDMA/1xRTT/EvDO or
GSM/GPRS/EDGE,
Bluetooth® 1.2 with
patch

Camera

VGA 640 x 480
0.5 mega-pixels

VGA 640 x 480
0.5 mega-pixels

VGA 640 x 480
0.5 mega-pixels

1280 x 1024

1.3 mega-pixels

1280 x 1024

1.3 mega-pixels

1280 x 1024

1.3 mega-pixels

Interface
Connector

Treo 600 smartphone
connector (USB,
serial without flow
control)

Multi-connector
(USB, serial without
flow control)

Multi-connector
(USB,
serial without flow
control)

Multi-connector
(USB, serial without
flow control)

Multi-connector
(USB, serial without
flow control)

Multi-connector
(USB, serial without
flow control)

Audio

2.5mm headset jack,
stereo compatible

2.5mm headset jack,
stereo compatible

2.5mm headset jack,
stereo compatible

2.5mm headset jack,
stereo compatible

2.5mm headset jack,
stereo compatible

2.5mm headset jack,
stereo compatible

speakerphone speakerphone speakerphone speakerphone speakerphone speakerphone

Feature Treo 600 Treo 650 Treo 680 Treo 700p Treo 755p Centro

Chapter 3 Product Line Overview

36 Palm Developer Guide, Palm OS Platform, Rev. J

3.6.2 Palm® handheld and LifeDrive™ mobile manager
hardware features

Feature Palm T|X
handheld

LifeDrive
mobile

manager

Tungsten
T5

Tungsten
E

Tungsten
E2

Tungsten
C

Processor

Type Intel Xscale
PXA270 ARM

Intel Xscale
PXA270 ARM

Intel XScale
PXA270 ARM

TI OMAP 311
ARM

Intel XScale
PXA255 ARM

Intel XScale
PXA255 ARM

Speed 312MHz 416MHz 312MHz 126MHz 200MHz 400MHz

Memory

RAM 32MB SDRAM
+ 128MB
NAND Flash

32MB +
3.85GB hard
drive

256MB 32MB 32MB 64MB

ROM 12MB
(masked)

16MB 32MB 8MB 8MB (masked) 16MB

Battery

Type Rechargeable
Lithium Ion

Rechargeable
Lithium Ion

Rechargeable
Lithium Ion

Rechargeable
Lithium Ion

Rechargeable
Lithium Ion

Rechargeable
Lithium Ion

mAh 1300 1660 1020 800 1020 1500

Standby or
use time

N/A N/A 48 days 21 days 48 days 30 days

Talk time N/A N/A N/A N/A N/A N/A

Removable No No No No No No

Form factor

Size 4.76" x 3.08" x
.61" without
flipcover

4.76" x 2.87"
x 7.4"

4.5" x 3" x .5"
without
flipcover

4.5" x 3.1" x .5" 4.5" x 3.1" x
.59" without
flipcover

4.0" x 3.07"
x .65"

5-way button Yes Yes Yes Yes Yes Yes

Grafitti Dynamic Dynamic Dynamic Yes Yes None

Keyboard None None None None None Built-in
QWERTY
keyboard

Display

Resolution 320 x 480 320 x 480 320 x 480
pixels

320 x 320
pixels

320 x 320
pixels

320 x 320
pixels

Density 16-bit (65,536
colors)

16-bit (65,536
colors)

16-bit (65,536
colors)

16-bit (65,536
colors)

16-bit (65,536
colors)

16-bit (65,536
colors)

Wireless

802.11b (WPA2
enabled)
Bluetooth®

Wi-Fi
(802.11b),
Bluetooth®
1.1

Bluetooth® None Bluetooth® Wi-Fi (802.11)

Hardware feature matrix

 Palm Developer Guide, Palm OS Platform, Rev. J 37

3.6.3 Palm® Z22 organizer and Zire™ handhelds
hardware features

Camera

None None None None None None

Interface Connector

Multi-
connector
(USB, serial
without flow
control)

Multi-
connector
(USB, serial
without flow
control)

Multi-
connector
(USB, serial
without flow
control)

Standard
Mini-USB

Multi-
connector
(serial without
flow control)

Universal
Connector
(USB, serial
with flow
control)

Feature Palm T|X
handheld

LifeDrive
mobile

manager

Tungsten
T5

Tungsten
E

Tungsten
E2

Tungsten
C

Feature Palm Z22 Zire 31 Zire 72

Processor

Type Samsung S3C2410A ARM Intel XScale PXA255 ARM Intel XScale PXA270 ARM

Speed 200MHz 200MHz 312MHz

Memory

RAM 16MB SDRAM + 32MB
NAND Flash

16MB 32MB

ROM 6MB ROM 4MB 8MB

Battery

Type Rechargeable Lithium Ion Rechargeable Lithium Ion Recharge-able Lithium Ion

mAh 720 900 950

Standby or use time 14 days 48 days 29 days

Talk time N/A N/A N/A

Removable No No No

Form factor

Size 2.7" x 4.06" x 0.6" 4.4" x 2.9" x .6" 4.6" x 2.95" x .67"

5-way button Yes Yes Yes

Grafitti Yes Yes Yes

Keyboard None None None

Display

Resolution 160x160 pixels 160x160 pixels 320 x 320 pixels

Density 16-bit (65,536 colors)
12-bit actual

16-bit (65,536 colors) 16-bit (65,536 colors)

Wireless

Chapter 3 Product Line Overview

38 Palm Developer Guide, Palm OS Platform, Rev. J

None None Bluetooth®

Camera

None None Photo: 1280 x 960
Video: 320 x 240

Interface Connector

Standard Mini-USB Standard Mini-USB Standard Mini-USB

Feature Palm Z22 Zire 31 Zire 72

SDIO support

 Palm Developer Guide, Palm OS Platform, Rev. J 39

3.7 SDIO support
An SDIO (SD Input/Output) card extends the functionality of devices with SD card
slots. SDIO cards support different data transfer modes, including SPI, SD 1-bit, and
SD 4-bit modes.

Many SDIO cards are labelled “low speed” or “full speed.”

■ If an SDIO card is a low-speed card, then it is required to support only the SPI and
1-bit data transfer modes.

■ If an SDIO card supports full-speed data transfer, then all three data modes (SPI,
SD 1-bit, and SD 4-bit) are supported.

The following table* lists the transfer modes of SDIO cards that are compatible with
Palm devices.

For information on developing SDIO applications for Palm devices, see Chapter 12.

* In this and the following tables, a bullet () indicates that the feature is available
on that device.

Device SPI SD 1-bit SD 4-bit

Centro smartphones - - -

LifeDrive mobile
manager

-

Palm T|X handheld -

Palm Z22 organizer - - -

Treo 600 smartphone - -

Treo 650 smartphone -

Treo 680 smartphone -

Treo 700p smartphone -

Treo 755p smartphone - - -

Tungsten C handheld -

Tungsten E handheld

Tungsten E2 handheld - -

Tungsten T5 handheld -

Zire handheld - - -

Zire 31 handheld - -

Zire 71 handheld

Zire 72 handheld

Chapter 3 Product Line Overview

40 Palm Developer Guide, Palm OS Platform, Rev. J

3.8 Software compatibility specifications (Palm®
libraries)

3.8.1 Palm® smartphones
Software Treo 600 Treo 650 Treo 680 Treo 700p Treo 755p Centro

Palm OS 5.2.1 5.4 5.4.9 5.4.9 5.4.9 5.4.9

Multimedia

Ring Tones

Sound and
Voice
Recording

Camera

Photos

Video - -

Codec Plug-in
Manager

-

Data communications

Network
preferences

HTTP

Wi-Fi - - - - - -

NetMaster

HTML Library -

Telephony

Telephony

SMS

Software compatibility specifications (Palm® libraries)

 Palm Developer Guide, Palm OS Platform, Rev. J 41

System extensions

Transparency

File Browser
API

- - - - -

Smart Text
Engine

REM sleep

MMS helper
functions

NVFS -

Handspring®
extensions

Keyguard

Option
and shift

Tips and
tutorial

Full-screen
writing

- - - - - -

Applications

Web browser

VersaMail® -

Software Treo 600 Treo 650 Treo 680 Treo 700p Treo 755p Centro

Chapter 3 Product Line Overview

42 Palm Developer Guide, Palm OS Platform, Rev. J

3.8.2 Palm® handhelds, organizers, and mobile managers

Software Palm T|X
handheld

Palm Z22
organizer

LifeDrive
mobile

manager

Tungsten T5 Tungsten E Tungsten E2 Tungsten C Zire 31 Zire 72

Palm OS 5.4.9 5.4.9 5.4.8 5.4 5.2.1 5.4.7 5.2.1 5.2.8 5.2.8

Multimedia

Ring Tones - - - - - - - - -

Sound and
Voice
Recording

- - - -

Camera - - - - - - - -

Photos -

Video - - - - -

Codec
Plug-in
Manager

- - - -

Data communications

Network
preferences

- - - - - - - - -

HTTP - - - - -

Wi-Fi - - - - - -

NetMaster - - - - - - - - -

HTML Library - - - - - - -

Telephony

Telephony - - - - - - - - -

Software compatibility specifications (Palm® libraries)

 Palm Developer Guide, Palm OS Platform, Rev. J 43

SMS - - - - - - - - -

System extensions

Transparency - - - - - - - - -

File Browser
API

- - - - - - -

Smart Text
Engine

- - - - - - - -

REM sleep - - - - - - - -

MMS helper
functions

- - - - - - - - -

NVFS - - - -

Handspring®
extensions

- - - - - - - - -

Keyguard - - - - - - - - -

Option
and shift

- - - - - - - - -

Tips and
tutorial

- - - -

Full-screen
writing

- -

Applications

Web browser - - - - -

VersaMail® - - - - -

Software Palm T|X
handheld

Palm Z22
organizer

LifeDrive
mobile

manager

Tungsten T5 Tungsten E Tungsten E2 Tungsten C Zire 31 Zire 72

Chapter 3 Product Line Overview

44 Palm Developer Guide, Palm OS Platform, Rev. J

3.9 sysExternalConnectorAttachEvent and
sysExternalConnectorDetachEvent
notifications

The sysExternalConnectorAttachEvent and
sysExternalConnectorDetatchEvent notifications are used with the Palm Multi-
connector. For more information, see Chapter 15.

3.10 kPmConnectorClass Notifications
The kPmConnectorClass notifications are used by LifeDrive mobile managers to
detect accessories.

Power notification
0x0008

Serial notification
0x0040

USB notification
0x0010

Tungsten T5 handheld

Tungsten E2 handheld

LifeDrive mobile
manager

Treo 650 smartphone - - -

Treo 680 smartphone

Treo 700p smartphone

Treo 755p smartphone

Centro smartphone

Audio
With Headset

0x05

Audio
No headset

0x00

Carkit

0x01

Generic Serial

0x03

LifeDrive mobile
manager

-

 Palm Developer Guide, Palm OS Platform, Rev. J 45

PART II

Features and Libraries

This part of the guide details the software libraries available in the Palm OS® SDK.

46 Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

 Palm Developer Guide, Palm OS Platform, Rev. J 47

CHAPTER 4

4. PIM SDK

This chapter incudes information on the PIM SDK, and how to use its database
structures for PIM features.

4.1 The PIM SDK
The PIM SDK includes the latest information on PIM databases and structures,
including header files, documentation, and sample code. It must be downloaded
separately from the latest Palm OS SDK at http://pdn.palm.com.

To find the PIM SDK, navigate to develop > platform SDKs > Palm OS. The link to
the PIM SDK is included on the Palm OS platform page, which is called, “Updated PIM
Database Structures.” Alternately, you can search the PDN Knowledge Base for
Answer ID 418.

For complete documentation see the document Application Note 4: Accessing PIM
Databases in the PIM SDK.

4.2 Known issue
Palm PIM applications include 4 features:

■ Contacts

■ Calendar

■ Tasks

■ Memo

Palm provides two methods for developing applications using Contacts. One is to call
the Contacts library APIs listed in Contacts.h. The second method is to use the APIs
provided in the PIM SDK to access the PIM database directly. Please be aware that
using the Contacts library APIs listed in Contacts.h may not provide satisfactory
performance.

Palm provides only one method for developing applications using the other PIM
features: Calendar, Tasks, and Memo. This method is to use the APIs provided in the
PIM SDK to access the PIM database directly.

When different applications use both methods simultaneously, there may be
conflicts. To prevent conflicts, when you call APIs provided in the PIM SDK to access
the PIM database, pass the dmModeExclusive argument.

If you have used the dmModeExclusive argument and still have database conflicts,
contact Palm DTS.

Chapter 4 PIM SDK

48 Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

 Palm Developer Guide, Palm OS Platform, Rev. J 49

CHAPTER 5

5. Multimedia

This chapter details the multimedia features and libraries available in the
Palm OS® SDK. Palm OS devices feature imaging, video, and audio multimedia
capabilities.

This chapter begins with a detailed description of the Codec Plug-in Manager, which
is used to register and provide codecs for multimedia features where necessary.
Other components used to provide each feature are illustrated in the diagram below.

Multimedia

Imaging/Video Audio

■ Camera Manager

■ Photo Library

■ LCD Overlay Library

■ SndFileStream Library

■ Tones Library

Codec Plug-in
Manager

Chapter 5 Multimedia

50 Palm Developer Guide, Palm OS Platform, Rev. J

5.1 Codec Plug-in Manager
Available on:
■ Centro™ and Treo™ smartphones

■ LifeDrive™ mobile manager

■ Tungsten™ T5, Tungsten™ E2, and Palm® T|X handhelds

■ Zire™ 72 handhelds

The Codec Plug-in Manager unifies codecs available for Palm devices and provides a
standardized way to access and load codecs.

The Codec Plug-in Manager is declared in the header file
palmOnePalmCodecPluginMgr.h, while the method that codecs use to handle
individual formats is declared in the header file palmOneCodecFormat.h. Each
media format is denoted by a four-byte string (for example, JPEG).

Because there are many separate formats handled by the Codec Plug-in Manager,
and new formats may be added later as new codecs are written or released, the
particulars of handling specific formats are beyond the scope of this chapter. A
complete list of the codec media formats currently available exists in the
palmOneCodecFormat.h section of the Palm API Guide, Palm OS Platform.

For examples of how to handle specific formats, refer to the Sample Code section of
the Palm OS SDK.

5.1.1 Codec Plug-in Manager overview
At each bootup, the Codec Plug-in Manager searches for codec plug-ins first in RAM,
then in the system image. It recognizes codecs by the PRC type 'CdPl' and loads all
codecs into memory, regardless of whether they will be used or not.

Each PRC of type 'CdPl' is then queried for the format pair it supports. A format pair
consists of two parts:

1. The input format

2. The output format that will come out of the codec

For example, an MPEG4 codec (decoder) supports MPEG4 ->YUV, so its format pair
is [MPEG4, YUV]. The expected input is MPEG4, and the output format is YUV.

A single PRC can contain multiple codecs and support multiple format pairs.

IMPORTANT: Major codecs such as JPEG, GIF, or MP3 should each be implemented
as single PRCs.

For each codec plug-in, there can be more than one codec. These codecs may also
have the exact same input and output formats. For this reason, every format pair has
an additional parameter associated with it, called a Codec ID. This codec ID
parameter is used to differentiate between the different codecs in a codec plug-in. In
most cases, one codec plug-in only contains one codec, so you can set the Codec ID
parameter to 0 (palmNULLCodecID).

For more information on Codec IDs, see Section 5.1.3 on page 53.

The Codec Plug-in Manager creates and manages two linked lists:

Codec Plug-in Manager

 Palm Developer Guide, Palm OS Platform, Rev. J 51

1. A linked list of codecs - Includes codec plug-ins, or 'CdPl's, where each codec
is added to the front of this list upon discovery.

2. A linked list of format pairs - Includes format pairs, where each pair is added
to the beginning of this list upon discovery, and each format pair has a reference
to a codec plug-in in the linked list of codecs

The following diagram is an example of the process.

NOTE: In this diagram, items with solid lines indicate which of the two linked lists is
being acted upon at the time of the change. Items with dashed lines indicate that this
list is not being acted upon.

1. At bootup, the Codec Plug-in Manager looks for codecs, and finds first codec plug-
in, 'CdPl' 1:

2. The Codec Plug-in Manager then queries 'CdPl' 1 for the format pairs it
supports. In this example, 'CdPl' 1 supports two pairs, “Pair A” and “Pair B”:

3. Next, the Codec Plug-in Manager finds another codec plug-in, 'CdPl' 2. (Notice
that 'CdPl' 2 is placed in front of 'CdPl' 1 in the linked list.)

CdPl 1

Linked List of Codecs Linked List of Format Pairs

CdPl 1

Linked List of Codecs

Pair B

CdPl 1

Linked List of Format Pairs

Pair A

CdPl 1

Updating List
of Format Pairs

CdPl 2

Linked List of Codecs

CdPl 1

Pair B

CdPl 1

Linked List of Format Pairs

Pair A

CdPl 1

Chapter 5 Multimedia

52 Palm Developer Guide, Palm OS Platform, Rev. J

4. The Codec Plug-in Manager then queries 'CdPl' 2 for the format pairs that it
supports. 'CdPl' 2 supports two pairs, “Pair A” and “Pair C”.

When the Codec Plug-in Manager receives a request for a codec plug-in that supports
a particular format pair, the Codec Plug-in Manager will traverse the linked list of
format pairs to see if the requested format pair is supported. The Codec Plug-in
Manager will then return the codec that corresponds to the first format pair that
matches what it’s looking for. This means that a codec loaded later always has a
higher priority than a codec loaded earlier.

As shown in the previous diagram example, when an application asks the Codec
Plug-in Manager for a codec that supports the format pair “Pair A”, the Codec Plug-in
Manager will traverse the linked list of format pairs and find format pair “Pair A” as
the second element, and return 'CdPl' 2. It is important to note in this example that
Codec Plug-in Manager will always return 'CdPl' 2, because it was loaded last and
is therefore the first one in the format pairs linked list, even though there is another
codec that supports the format pair “Pair A” in the same list.

To override this codec priority, use a codec’s Creator and Codec ID to create a codec
session with a specific codec by calling CodecMgrCreateSessionByID ().

5.1.2 Codec wrapping
For the Codec Plug-in Manager to recognize a codec, the codec must be “wrapped”.
This means that each codec must be type 'CdPl', and must have the correct
structure for the format pairs it supports. A codec that is wrapped will be registered
with as a codec that can be used by applications when calling the Codec Plug-in
Manager.

If you are developing a codec plug-in for the Codec Plug-in Manager, you must follow
the function numbers in the order specifically illustrated in the following table.
Currently, only 12 functions are supported (0-11, as shown in the following table).

To use the function name, call it the same way you would call a function that is in a
68K shared library.

CdPl 2

Linked List of Codecs

CdPl 1 CdPl 2

Linked List of Format Pairs

Pair B

CdPl 1

Pair A

CdPl 1CdPl 2

Updating List
of Format Pairs

Pair C Pair A

Codec Plug-in Manager

 Palm Developer Guide, Palm OS Platform, Rev. J 53

5.1.3 Codec Plug-in Manager process
To use the Codec Plug-in Manager, an application must determine if the input/output
format of the codec is supported. Optionally, it can also specify which particular
codec to use.

The Codec Plug-in Manager selects a particular codec based on four criteria:

1. Input format - The format of the data input to the codec.

2. Output format - The format of the data output from the codec.

3. PRC Creator ID - The creator ID of the PRC containing the desired codec on the
device. This is optional; you can have the Codec Plug-in Manager select an
appropriate codec based on the input and output formats.

IMPORTANT: PRC Creator IDs are unique and must be registered with ACCESS
(formerly PalmSource).

4. Codec ID - The unique ID of the codec. This is provided because a PRC file can
contain multiple codecs that have the same input and output formats. Again, this
is optional; you can have the Codec Plug-in Manager select an appropriate
codec based on the input and output formats.

Function
Number

Function

0 CodecOpen

1 CodecClose

2 CodecSleep

3 CodecWake

4 CodecLibAPIVersion

5 CodecEnumerateSupportedFormats

6 CodecCreateSession

7 CodecResetSession

8 CodecExitSession

9 CodecGetMaxDestBufferSize

10 CodecEncodeDecode

11 CodecCustomControl

Chapter 5 Multimedia

54 Palm Developer Guide, Palm OS Platform, Rev. J

Once an application has selected a codec, it must go through the following steps,
which are illustrated in the diagram on the next page:

1. Open the library.

2. Create a session with the Codec Plug-in Manager.

3. Specify the input and output formats and, optionally, which particular codecs to
use.

4. Start decoding or encoding.

5. Delete the session once the decoding or encoding is complete.

6. Close the library.

Codec Plug-in Manager

 Palm Developer Guide, Palm OS Platform, Rev. J 55

The following diagram shows the process flow of a typical Codec Plug-in Manager
session.

Lib Open

Create Session

Set in Size and
Out Size

Encode/Decode

Out Size
>0

In Size
>0

Done

Delete Session

LIB Close

Got Data

Codec Needs
More Data

Partial Buffer
Management

Recycle Unused
Input Data

Over Run Under
Run

Custom Control

Other

No No

Error

Need Bigger Dest Need Bigger SRC

Yes Yes

Yes

Yes

No

No

ErrNote

1

2

3

4

5

6

Chapter 5 Multimedia

56 Palm Developer Guide, Palm OS Platform, Rev. J

5.1.4 Media codec formats supported by device
The following table details the codecs that are supported for imaging, video, and audio features on Palm OS devices.

Feature Technology Product

Codec Description Encoder Decoder Zire Tungsten Treo Centro

22 72 T5 E2 T|X Life
Drive

6XX

CDMA

6XX

GSM

680

GSM

700p 755p

Imaging BMP Windows bitmap - -

GIF Graphics
interchange
format

- -

JPEG standard image
compression
algorithm

-

TIFF Still image
bitmaps stored
in tagged fields

- -

Video H263 Provisional ITU-T
standard

-

MJPEG JPEG encoding
for moving
images

- -

MPEG4 Extension of
MPEG1 and
MPEG2
compression

- -

- - - - - -

Codec Plug-in Manager

 Palm Developer Guide, Palm OS Platform, Rev. J 57

Audio ADPCM ADPCM decoder - -

AMR AMR-NB - - - - - - -

3GPP

AMR/AMR2/
GSM AMR

- - - - - - - -

MP3 Audio Level 3
(MP3)

- -

QCELP QCELP 13K
encoder library
following the
standard TIA/EIA
IS733

- - - - - -

Feature Technology Product

Codec Description Encoder Decoder Zire Tungsten Treo Centro

22 72 T5 E2 T|X Life
Drive

6XX

CDMA

6XX

GSM

680

GSM

700p 755p

Chapter 5 Multimedia

58 Palm Developer Guide, Palm OS Platform, Rev. J

5.1.5 For more information
The Codec Plug-in Manager header files include:

■ palmOneCodecPluginMgr.h

■ palmOneCodecPluginMgrCommon.h

■ palmOneCodecFormat.h

For more detailed information on the Codec Plug-in Manager, refer to the Palm API
Guide, Palm OS Platform at the Palm Developer Network (PDN).

Also, refer to the Sample Code section of the Palm OS SDK for coding examples.

5.2 Imaging
On Palm Treo™ smartphones and handhelds that include cameras, an application
must work with several software components to provide imaging functionality,
including the Photo Library, Camera Manager, Codec Plug-in Manager, LCD Overlay,
and Camera Drivers, as shown in the following diagram.

Application

Photo Library

Codec Plug-in
Manager

LCD Overlay

Camera Mgr

Camera Driver

Imaging

 Palm Developer Guide, Palm OS Platform, Rev. J 59

5.2.1 Photo Library

Available on:
■ Centro™ and Treo™ smartphones

■ LifeDrive™ mobile manager

■ Tungsten™ T5, Tungsten™ E, Tungsten™ E2, and Palm® T|X handhelds

■ Zire™ 31 and Zire™ 32 handhelds

■ Palm® Z22 organizer

The Photo Library includes three basic categories of functionality:

1. Capturing images and video with a camera attached to device

2. Storing images and video

3. Manipulating images

The Photo Library uses the LCD Overlay to preview what the camera is scanning. The
Photo Library itself provides the camera user interface, but uses the Camera Manager
to capture photos. For more information, see Section 5.2.2 on page 60.

When storing and manipulating images, the Photo Library provides the ability to
select images, open, close and save images, get image information, scale, crop and
rotate images, and delete images.

There are three versions of the Photo Library: version 1, version 2, and version 3. In
general, structures, function names, and things that ends in “V2” are available only
in version 2 and above. Items that ends in “V3” are available only in version 3.
Exceptions are noted where appropriate.

Use PalmPhotoLibGetVersion() to check the version of the library that exists on
the device.

The Photo Library is declared in the header file palmOnePhoto.h.

5.2.1.1 Coding examples
The following code is an example of how to use the Photo Library to capture images:

MemSet(&cParam, sizeof(PalmPhotoCaptureParamV2), 0);

//saving to memory (versus SD card, for example)
cParam.fileLocation.fileLocationType = palmPhotoMemoryLocation;

cParam.fileLocation.file.MemoryFile.bufferSize = 0;
cParam.fileLocation.file.MemoryFile.bufferP = NULL;
cParam.imageInfo.width = width;
cParam.imageInfo.height = height;
cParam.imageInfo.bitsPerPixel = 16;

//specifying RGB565 file format (versus JPEG, for example)
cParam.imageInfo.fileFormat = palmPhotoRGB565FileFormat;

//capturing picture
imageH = PalmPhotoCaptureImageV2(photoLibRefNum, &cParam);

Chapter 5 Multimedia

60 Palm Developer Guide, Palm OS Platform, Rev. J

The following code is an example of how to use the Photo Library to select images:

SelectionParam.albumID = PALM_PHOTO_ALBUM_ALL;
SelectionParam.offset = 0;
SelectionParam.selectionCount = 3;
SelectionParam.filterCallback = NULL;
SelectionParam.userDataP = NULL;
SelectionParam.selectedImages.imageCount= 0;
PalmPhotoSelectDlg(photoLibRef, &SelectionParam, palmPhotoDlgSelection, true);

For more coding examples, refer to the Sample Code section of the Palm OS SDK.

5.2.1.2 For more information
The Photo Library header files include:

■ PalmPhoto.h

■ palmOnePhoto.h

■ palmOnePhotoCommon.h

Photo Utility header files include:

■ PalmPhotoUtilProt.h

■ PalmPhotoUtilTypesProt.h

For more detailed information on the Photo Library and Photo Utility header files,
refer to the Palm API Guide, Palm OS Platform at the Palm Developer Network (PDN).

Also, refer to the Sample Code section of the Palm OS SDK for coding examples.

5.2.2 LCD Overlay

Available on:
■ Centro™ and Treo™ smartphones

■ Zire™ 72 handhelds

On devices with a camera, the LCD Overlay allows users to preview what the camera
is scanning. The LCD Overlay is declared in the header files palmOneLcdOverlay.h
and palmOneLcdOverlayCommon.h.

Without the LCD Overlay, applications would have to negotiate the Palm OS software
layer to access the hardware screen buffer, which might impact performance. In order
to preview what the camera is scanning, the LCD Overlay allows applications to

Imaging

 Palm Developer Guide, Palm OS Platform, Rev. J 61

access the screen buffer directly by bypassing the Palm OS layer of software, as
shown in the following diagrams:

The LCD Overlay uses the YUV color model. For this reason, it is easy for a decoder
to use. Please note that although decoders usually separate three individual buffers
for Y, U, and V color definitions, the LCD Overlay only expects one pointer.

5.2.2.1 External dialogs
External dialogs are pop-up windows used by applications to notify the user that an
action is taking place. Examples include battery level notifications, volume level
graphics, or SMS message dialogs.

Only the LCD Overlay is aware of what is being rendered on the screen when it has
control of the screen. (The LCD Overlay is beyond control of the Windows Manager.)
For this reason, applications must handle external dialog pop-ups whenever
necessary.

On Treo 700p smartphones and later, two notifications have been created to allow
applications to handle external dialogs:

■ #define sysNotifyExternalDialogOpenedEvent is sent when an external
dialog is about to be displayed.

■ #define sysNotifyExternalDialogClosedEvent is sent when an external
dialog is about to be closed.

The following use case will describe how to use these notifications.

Assume that an application called PlayerX is currently playing video as the active
application. Another application called LauncherY wants to display a mini-LauncherY
external dialog when the Side key is pressed.

Since it is not possible for PlayerX to know that it should pause the video while the
mini-LauncherY dialog is being displayed, LauncherY should broadcast
sysNotifyExternalDialogOpenedEvent before it tries to draw an external dialog,
then broadcast sysNotifyExternalDialogClosedEvent when it is finished
displaying the dialog.

PlayerX should register for both notifications and keep track of how many external
dialogs are currently open. If PlayerX is playing video when it receives
sysNotifyExternalDialogOpenedEvent, then it should pause the video until all
external dialogs are closed.

Camera Driver

Camera
Manager

Application

Hardware
(Screen)

Palm OS

Without LCD Overlay

Camera Driver

Camera
Manager

Application

Hardware
(Screen)

Palm OS

LC
D

 O
verlay

With LCD Overlay

Chapter 5 Multimedia

62 Palm Developer Guide, Palm OS Platform, Rev. J

5.2.2.2 For more information
The LCD Overlay header files include:

■ palmOneLcdOverlay.h

■ palmOneLcdOverlayCommon.h

For more detailed information on the LCD Overlay header files, refer to the Palm API
Guide, Palm OS Platform at the Palm Developer Network (PDN).

Also, refer to the Sample Code section of the Palm OS SDK for coding examples.

5.2.3 Camera Manager

Available on:
■ Centro™ and Treo™ smartphones

■ Zire™ 72 handhelds

This section provides reference information for the Camera Manager. You can use the
functions in this library to turn the camera on, control the settings, and to allow an
application to capture and preview images and video.

The Camera Manager is declared in the header files palmOneCameraCommon.h and
palmOneCamera.h.

IMPORTANT: For information on a known issue with Camera Manager and streaming
on Treo 700p, Treo 755p, and Centro smartphones, see Section 5.5.2 on page 73.

If the device includes a camera slider, such as the Zire 72 handheld, camera slider
notification information is declared in the header file PalmCameraSlider.h. For
more information on the camera slider, see Section 5.2.3.3 on page 64.

There are three versions of the Camera Manager: Version 1, Version 2, and Version 3.
Version 2 has several features in addition to those in Version 1. Version 3 includes
minor changes to Version 2, such as additional image formats. The differences are
noted throughout this section.

NOTE: The Camera Library is currently still supported for the Treo 600 smartphones.
In the future, however, the Camera Manager should be used instead.

5.2.3.1 Using the Camera Manager
Depending on the hardware available on a particular device, Camera Manager
settings and functionality may or may not be available. For this reason, you should
always use the CamLibControl query commands to check for the features and
settings that are available. For more information, see the information on
CamLibControl in the API Guide.

Programmatically, you will know if a camera is available on a device if the Camera
Manager is present.

Imaging

 Palm Developer Guide, Palm OS Platform, Rev. J 63

The Camera Manager is more difficult to use than the Photo Library, but it does
provide options to control settings for photographic contrast, exposure, sharpness,
and light.

When using the Camera Manager, an application must implement many steps
manually. For example, to display a preview window on the screen, the application
must communicate with the camera driver and manually place the image data on the
screen.

Also, keep the following points in mind when using Camera Manager:

■ The Camera Manager always returns bitmap data.

■ The Camera Manager communicates directly with the camera driver.

■ The Camera Manager does not use the Codec Plug-in Manager.

■ The Camera Manager can be used to capture images manually, but there is no
user interface.

To use the Camera Manager to capture images, an application should use the
following steps:

1. Open the Camera library.

2. Turn the camera on.

3. Proceed with camera functionality, such as turning on image preview, adjusting
settings, and so forth.

5.2.3.2 Resources required for camera functionality
The following requirements are necessary to take advantage of camera functionality:

■ To preview images, capture images, and display the camera configuration dialog
box, the device must support 16-bit color-depth mode. The camera configuration
dialog box may or may not be present on a particular device.

■ Depending on the available camera hardware, images can be previewed in
resolution sizes listed in the following table:

NOTE: Video is not available in Camera Manager V1. The QCIF and CIF formats are
not available in Camera Manager V1 or V2.

For a matrix of available image formats by device, see Section 5.1.4 on page 56.

Format Size Memory Use

SXGA 1280 x 1024 2.6MB images

SXGA 1280 x 960 2.4MB images

VGA 640 x 480 600KB images

QVGA 320 x 240 150KB images/video

QQVGA 160 x 120 37.5KB images/video

QCIF 176 x 144 50KB images/video

CIF 352 x 288 198KB images/video

Chapter 5 Multimedia

64 Palm Developer Guide, Palm OS Platform, Rev. J

5.2.3.3 Using the Camera Slider on Zire™ 72 handhelds
The Zire 72 handheld includes a camera slider that opens to reveal a camera shutter
button and camera lens. Camera slider notification information is declared in the
header file PalmCameraSlider.h for the Zire 72 handheld.

Applications for the Zire 72 should check for the presence of a camera slider, register
for camera slider notifications, and then turn the camera on if the slider is open or if
no slider is present. Typically, an application should follow this general workflow:

1. Open the Camera library.

2. Check to see if a camera slider is present.

3. If a camera slider is present:

– Register for camera slider notifications.

– Check to see if the slider is open.

4. Turn the camera on.

5. Proceed with camera functionality, such as turning on image preview, adjusting
settings, and so forth.

5.2.3.4 For more information
The Camera Manager header files include:

■ palmOneCamera.h

■ palmOneCameraSlider.h

■ palmOneCameraCommon.h

For more detailed information on the Camera Manager header files, refer to the Palm
API Guide, Palm OS Platform at the Palm Developer Network (PDN).

Also, refer to the Sample Code section of the Palm OS SDK for coding examples.

5.2.4 JPEGLib, CameraLib, and ImageLib
The JPEGLib has been deprecated and removed from the document Palm API Guide,
Palm OS Platform, which is part of the SDK download.

The CameraLib and ImageLib still exist, and are included in the API Guide.

5.2.4.1 CameraLib
CameraLib consists of:

■ The old Camera Library header files CameraLib.h and CameraLibCommon.h.

■ The Camera Manager header files palmOneCamera.h, palmOneCameraSlider.h,
and palmOneCameraCommon.h.

To provide camera support to applications on Zire 72, Treo 650, and later devices, use
the Camera Manager Library header files instead of the old Camera Library. Refer to
Section 5.2.3 on page 62 for more information.

Imaging

 Palm Developer Guide, Palm OS Platform, Rev. J 65

5.2.4.2 ImageLib
ImageLib provides support for image drawing and manipulation on Treo 600 devices
(using the header files ImageLib.h and ImageLibCommon.h).

For Treo 650 and later devices, use the palmOne Photo Library before using the
Image Library. The Photo Library allows better integration with the built-in Media
application and storing images on the device.

To use this library, first check the version of the library and then make the appropriate
API calls depending on the version. The header files for the Photo Library are
included in the Imaging Library (palmOnePhoto.h and palmOnePhotoCommon.h).

Refer to Section 5.2.1 on page 59 for more information on the Photo Library.

Chapter 5 Multimedia

66 Palm Developer Guide, Palm OS Platform, Rev. J

5.3 Audio

5.3.1 Voice recording and sound libraries

Available on:
■ Centro™ and Treo™ smartphones

■ LifeDrive™ mobile manager

■ Tungsten™ T5, Tungsten™ C, and Palm® T|X handhelds

■ Zire™ 72 handhelds

5.3.1.1 Palm® OS Sound Manager library
In general, use the Palm OS Sound Manager Library HsSoundLib to control voice
recording and sounds, create audio streams, and support audio stream playback.
This Library supports both synchronous and asynchronous mode.

5.3.1.2 Sound File Stream library (SndFileStream)
SndFileStream, a 68k shared library, is used mostly by audio applications to play
and record audio files in different formats by managing the Sound Manager and the
Codec Plug-in Manager. It provides support for formats including AMR, WAV, QCELP,
and MP3. SndFileStream also provides support for recording and playing audio
from files.

SndFileStream is declared in the header file palmOneSndFileStream.h.

The following diagram details how an application can use SndFileStream to work
with other components to play and record audio.

AudioDriver

SoundMgr
(ARM Library)

68K Application

Codec
(QCP)

CodecPluginMgr
(ARM Library)

SndFileStream
(68K Library)

Codec
(AMR)

Codec
(MP3)

Audio

 Palm Developer Guide, Palm OS Platform, Rev. J 67

5.3.1.2.1 Audio playback

In an audio playback application, SndFileStream parses the audio header
information in the audio file that is being played. This header file includes:

■ File format

■ Sample rate

■ Duration

■ Meta data

SndFileStream then uses the parsed info to create an audio stream through Sound
Manager. Depending on the audio format, it also creates a decoding session through
the Codec Plug-in Manager. Next, SndFileStream manages reading bitstreams
from the audio file, passing the bitstream data to the codec, and passing the decoded
audio samples to the Sound Manager to play.

For the Treo 700p smartphone, there are APIs that help retain audio sync. For more
information, refer to the Palm API Guide, Palm OS Platform, or see the
HsSoundLib.h header file.

5.3.1.2.2 Audio recording

In an audio recording application, there is no header file to parse. Instead, the
application is responsible for passing information to SndFileStream.
SndFileStream must then go through the following steps:

1. Generate a header file.

2. Write the header to the recording file (before writing any recording data to that
file).

3. Create an audio stream through the Sound Manager.

4. Create an encoding session through the Codec Plug-in Manager.

5. Get raw Pulse Code Modulation (PCM) audio data from Sound Manager.

6. Pass raw data to the codec to encode.

7. Write the encoded bitstream data to the recording file.

5.3.1.2.3 Audio pause and resume

For Treo 680 smartphones and later, audio pause and resume functionality has been
added to the HsSoundLib.h header file. To access these features, use the calls
PmSndStreamPause and PmSndStreamResume.

Chapter 5 Multimedia

68 Palm Developer Guide, Palm OS Platform, Rev. J

5.3.1.3 Changes for Centro™ smartphones
For Centro smartphones, the header file HsSoundLibCommon.h, located at Incs/
Common/Libraries/HsSoundLib/, now includes two new sound port configuration
types:

/**<Input port used by OutRadioMic switch to get uplink audio from BT
headset. */
#define hsSndPortID_InBtHeadset HS_AC97(0x00000015)

/**<Input port used by OutRadioMic switch to get uplink audio from BT
handsfree mode. */
#define hsSndPortID_InBtHandsfree HS_AC97(0x00000016)

Also, for Centro smartphones, the version of the sound library is defined as:

/**<Version of the sound library. */
#define hsSndLibVersion 0x010D0000

5.3.1.4 For more information
The voice recording and sound header files include:

■ HsSoundLib.h

■ palmOneSndFileStream.h

For more detailed information on the voice recording and sound header files, refer to
the Palm API Guide, Palm OS Platform at the Palm Developer Network (PDN).

Also, refer to the Sample Code section of the Palm OS SDK for coding examples.

5.3.2 Tones library

Available on:
■ Centro™ and Treo™ smartphones

The Tones library is used to manage the two phone ring tone databases, the “MIDI
Ring Tone DB” and the “Palm OS Tone DB”. The TonesLib.h header file, which is
provided with the Palm SDK, contains all the public information referenced in this
section, including constants, structure definitions, and function prototypes.

Use the Tones library to create personalized ring tones. Supported formats include:

■ AMR

■ MIDI

■ MP3

■ QCELP

■ WAV

NOTE: MIDI ringtones are limited to 64KB in size. Other types do not have this limit.

The Tones library uses the Codec Plug-in Manager to provide codecs. Codecs then
convert between audio formats.

Audio

 Palm Developer Guide, Palm OS Platform, Rev. J 69

5.3.2.1 Ring tone databases
Two ring tone databases are accessed by the Tones library, the “MIDI Ring Tone DB”
and the “Palm OS Tone DB.”

■ The MIDI Ring Tone database contains all MIDI data for ring tones, and is accessed
directly by the Tones library. This database is used for backwards compatibility.

■ The Palm OS Tone database is used for WAV, AMR, QCELP, and MP3 file types. It
contains only the names of the tones stored as file streams. This database is
specific to alert tones.

Each record in the MIDI Ring Tone database should contain one MIDI sound, using a
Format 0 Standard MIDI File (SMF). For more information on the database format, see
the Sound Manager see the Sound section of the Palm OS Companion and Reference
available at http://www.access-company.com/developers/documents/palmos/
palmos.html.

The following table contains the details of the system MIDI Ring Tone database.

In order for the system to recognize a new ring tone, the tone must be installed in the
database using an alarm management tool. If you are creating ring tone
management applications, you may want to keep a separate database of archived
ring tones.

We recommend that you use the attributes listed in the following table for such a
database.

You can use standard Palm OS database calls to install the sound records into this
database from their own application. To do this, typically, you would create a MIDI
sound database, install it on the smartphone, and then use an alarm management
program to copy the sounds into the MIDI Ring Tone database.

5.3.2.1.1 Restoring the Ring Tone databases

The MIDI Ring Tone and Palm OS Tone databases are stored in RAM in order to allow
applications to add and delete ring tones. The OS also includes a copy of this
database frozen in the system image. The database is copied to RAM after a hard
reset or if the database has been deleted from RAM.

Feature Description

Database name #define TonesDBName 'MIDI Ring Tones'

Database type smfr

Creator code #define hsFileCMultiChannelRingToneDB
MCnl

Feature Description

Database type smfr

Creator code HSsf

http://www.access-company.com/developers/documents/palmos/palmos.html
http://www.access-company.com/developers/documents/palmos/palmos.html
http://www.access-company.com/developers/documents/palmos/palmos.html
http://www.access-company.com/developers/documents/palmos/palmos.html

Chapter 5 Multimedia

70 Palm Developer Guide, Palm OS Platform, Rev. J

To restore original ring tones, simply delete the database.

If ring tones are lost due to a hard reset, you may use HotSync to replace the data.

5.3.2.1.2 Ring tone tools

Palm smartphones use standard Palm OS MIDI files for ring tones, and all popular
third-party tools for creating Palm OS system sounds can be used to create ring
tones.

5.3.2.1.3 Example code for creating and adding ring tones

To add a new ring tone programmatically to the Tones library using a single interface,
use the TonesLibToneCreate() and TonesLibToneWrite(), and
TonesLibToneClose() functions, as shown in the example code below:

Err TonesLibToneCreate (UInt16 refNum, UInt32* streamP, ToneType toneType,
CharPtr toneName, Boolean protectedTone);

TonesLibToneWrite(ref,stream,soundBuf,bufSize);

Err TonesLibToneClose (UInt16 refNum, UInt32 stream);

In this example, the TonesLibToneCreate() function includes the following
parameters:

■ refNum - The reference to the Tones library, which is already open.

■ streamP - This parameter is returned to the caller and should be used during the
calls to TonesLibToneWrite() and TonesLibToneClose().

■ toneType - This is the format of the tone, which may be:

– toneTypeMIDI

– toneTypeWAV

– toneTypeQCELP

– toneTypeAMR

– toneTypeMP3

■ toneName - This is a string limited to 31 characters.

■ protectedTone - This parameter instructs the Tone library to enforce forward
lock on the created ringtone.

The TonesLibToneClose() function includes these parameters:

■ refNum - The reference to the Tones library, which is already open.

■ streamP - This parameter identifies which stream is being closed. It is the value
that was returned from TonesLibToneCreate(), which will be returned to the
caller, and should be used during subsequent calls to TonesLibToneWrite().

In this example, the TonesLibToneCreate() function accepts a toneType
parameter. If the toneType parameter is set to toneTypeMIDI, the tone is created
and TonesLibToneClose() internally calls TonesLibAddMidiTone.

Audio

 Palm Developer Guide, Palm OS Platform, Rev. J 71

Otherwise, TonesLibAddMidiTone can be called separately, as shown in the code
snippet below:

TonesLibAddMidiTone(ref,midiTone,''Yes'',false);

NOTE: The TonesLibToneWrite() function can be called repeatedly (in a loop, for
example) and the data will be appended to the open stream. This way, the caller does
not need to buffer an entire audio file before calling TonesLibToneWrite().

In the next code example, the application scans the SD card for MIDI, WAV, or MP3
files and allows them to be added to the Tones library.

static Err PrvAddToneToTonesLib(UInt16 vfsVolume, UInt16 toneType, Char *fileName,
Char *path, Char *storeNameP)
{

Err err = errNone;
Char fullPath[512];
FileRef fileRef = NULL;
UInt32 newTone = 0;
UInt8 *dataP = (UInt8*)MemPtrNew(4096);
UInt32 numBytesRead;
UInt16 tonesLibRefNum = sysInvalidRefNum;

if(!dataP) goto Done;

// Load TonesLib
err = SysLibFind(tonesLibName, &tonesLibRefNum);
if (err)

err = SysLibLoad(tonesLibType, tonesLibCreator, &tonesLibRefNum);

if(err) goto Done;

// Create full path
StrCopy(fullPath, path);
StrCat(fullPath, fileName);

// Open the file
err = VFSFileOpen(vfsVolume, fullPath, vfsModeRead, &fileRef);
if(err) goto Done;

// Create tone
err = TonesLibToneCreate(tonesLibRefNum, &newTone, toneType, storeNameP, false);
if(err) goto Done;

// Write the tone
while(!err)
{

err = VFSFileRead(fileRef, 4096, dataP, &numBytesRead);
if(numBytesRead == 0) break;

err = TonesLibToneWrite(tonesLibRefNum, newTone, dataP, numBytesRead);

}

Chapter 5 Multimedia

72 Palm Developer Guide, Palm OS Platform, Rev. J

Done:
if(dataP) MemPtrFree(dataP);
if(fileRef) VFSFileClose(fileRef);
if(newTone) TonesLibToneClose(tonesLibRefNum, newTone);

return err;

}

5.3.2.2 For more information
The Tones library header files include:

■ TonesLib.h

For more detailed information on the Tones library header files, refer to the Palm API
Guide, Palm OS Platform at the Palm Developer Network (PDN).

Also, refer to the Sample Code section of the Palm OS SDK for coding examples.

5.4 Video playback
Palm devices do not currently provide a framework for video playback. This section
is not meant to be a tutorial on creating a video playback application. It is only a
guideline for what an application would need to do to provide such functionality.

To provide video playback, an application must work with Photo Library, Camera
Manager, the LCD Overlay, and the Codec Plug-in Manager by performing the
following tasks:

1. Parse the video file for video and audio content.

– Determine the kinds of tracks that are to be played: video, audio and/or both.

– Determine the track formats.

– Determine the target resolution.

2. Query the Codec Plug-in Manager for the necessary codec(s).

3. Split (demultiplex) the original content file into separate audio and video streams.

4. Create a Codec Plug-in Manager session for each codec you will use. (For
example, one for audio and one for video.)

5. Call CodecMgrEncodeDecode for every data packet for the audio and video
streams.

6. Scale the resolution of the video.

7. Manage synching video and audio together.

– For audio, the sampling rate tells you how much data must be played back. Use
the provided time stamps (the reference clock).

– For video, a timestamp is provided, but only the audio timestamp is usually
used as a reference.

8. Send the decoded and scaled content to the screen and speaker for playback.

Streaming

 Palm Developer Guide, Palm OS Platform, Rev. J 73

5.5 Streaming
Available on:
■ Centro™ and Treo™ smartphones

Streaming audio and video is available for Centro and Treo smartphones.

For more information on streaming specific to the Blazer® 4.5 web browser, see the
following sections:

■ Section 11.1.3.2 on page 204

■ Section 11.1.3.4 on page 208

■ Section 14.1.4.4 on page 264.

5.5.1 Best practices for encoding video for streaming
To encode video for the best streaming experience on EvDO products such as Treo
700p and Treo 755p smartphones, use the following best practices:

■ Consider formatting a small render-friendly web page to host your streaming
content. For an example, see http://mobile.palm.com.

■ Links should be delivered via RTSP:// or progressively ‘streamed’ through an
http:// link.

■ For encoding, the total bit rate should not exceed 200kbps, which includes video
and audio.

■ Use AAC and AAC Plus Audio formats only.

■ Use the .MP4 extension.

■ Use a screen resolution of 320 x 240.

■ For streaming, use 15fps at 128kbps (MPEG-4 or H.264 / stereo AAC or AAC Plus).

■ For sampling, use 128kbps at 48kHz.

5.5.2 Known issue
In the Treo 700p, Treo 755p, and Centro smartphones, the following API does not
work with streaming, and is a known issue:

CamLibControl([LibRefNum], kCamLibCtrlStreamStart, [&StreamType]);

In this API, the key parameter is the second parameter, which controls the camera.
The first and third parameters, surrounded by brackets, may be customized.

For streaming, the second parameter is kCamLibCtrlStreamStart. When you use
this API call with this parameter to stream in the Treo 700p smartphone, the call will
fail, although CamLibControl will still return 0. Returning 0 indicates that the
function is successful, even though it failed. The camera will not be turned on.

Currently, there is no workaround. For more information on streaming with your
application, refer to the Streaming code example in Section 11.1.3.4 on page 208.

Chapter 5 Multimedia

74 Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

 Palm Developer Guide, Palm OS Platform, Rev. J 75

CHAPTER 6

6. Data Communications

This chapter details the data communication features and APIs available in the
Palm OS® SDK.

6.1 NetPref Library API
Available on:
■ Centro™ and Treo™ smartphones

This section provides detailed information about the NetPref Library API.

The NetPref Library was created to provide better support for the GSM/GPRS
and CDMA/1XRTT network parameters, dynamic UI flags, Home/Roaming network
configurations, CCSM database utilization, synchronization with IOTA-provisioned
settings, and configuration of fallback services required by the features of the Palm
smartphone. The network database access was redesigned by moving database
and record access operations from the Network panel into the NetPref Library.

6.1.1 Loading the library
The NetPref Library is designed as a Palm OS shared library. The NetPref Library
should be loaded for use and unloaded after use by a client application. Link the
NetPref Library when you need it and then unlink it when you have finished.
The system does not load the NetPref Library at reset or start-up time and leave it
permanently installed, as is done with some other libraries. This method helps avoid
some HotSync® conflicts, such as an attempt to install over a protected database.

For examples of linking and unlinking, refer to NetPrefUtilNetPrefLibLink and
NetPrefUtilNetPrefLibUnlink as defined in the NetPrefUtils package.

Chapter 6 Data Communications

76 Palm Developer Guide, Palm OS Platform, Rev. J

The following code sample demonstrates how to link the NetPref Library based on
the NetPrefUtil package.

extern Boolean
NetPrefUtilNetPrefLibLink (NetPrefUtilNetPrefLibType* netPrefLibP)
{

Boolean isSuccessful = false;
Err err = 0;
UInt16 refNum = 0;
NetPrefContextTypeTag* cxtP = NULL;

ErrNonFatalDisplayIf (!netPrefLibP, "null arg");
 ErrNonFatalDisplayIf (netPrefLibP->linkSignature

== netPrefUtilNetPrefLinkSignature,
"NetPref lib already linked");

err = SysLibLoad (netPrefLibTypeID, netPrefLibCreatorID,
&refNum);

if (err)
{
ErrNonFatalDisplay ("failed to load NetPrefLib");
goto Exit;
}

err = NetPrefLibOpen (refNum, &cxtP);
if (err)

{
ErrNonFatalDisplay ("failed to open NetPrefLib");
goto Exit;
}

// "Construct" the NetPref lib "instance"
isSuccessful = true;

Exit:
if (err)

{
if (refNum != 0)

SysLibRemove (refNum);
MemSet (netPrefLibP, sizeof(*netPrefLibP), 0);
}

return (isSuccessful);
} // NetPrefUtilNetPrefLibLink

NetPref Library API

 Palm Developer Guide, Palm OS Platform, Rev. J 77

6.1.2 NetPref Library information
The following table shows the attributes of the NetPref Library and related
information. For more detail, see the Palm API Guide, Palm OS Platform.

6.1.3 NetPref panel
The Network Preference panel has been modified to provide support to the various
Palm smartphone features that are not possible by using the original Palm OS
software (3.5 and 5.x) Network Preference panel implementation. Changes include
parameters specific to GSM/GPRS and CDMA/1-X (Simple-IP & Mobile-IP), IOTA
support, CCSM table support, and various UI features such as hiding certain fields
and locking certain services.

In other changes, the network database record format was extended in a backward-
compatible way, and the network database access logic was separated into the
NetPref Library. The Network Preferences panel as well as other system components,
such as NetMaster library, the IOTA application, and network profile creator, uses the
NetPref Library to read, write, create, duplicate, and delete network service profiles.

In addition, the configuration of NetLib was redesigned to dynamically perform
during each network login instead of doing so only when a user selects a service.
This dynamic configuration implementation was moved from the Network panel
to the NetMaster library, which is described later in this section. This change permits
support for dynamic network configuration based on location, such as Home versus
Roaming, executing GPRS and One-X specific functions during login, and
implementing the service fallback feature.

Description Attribute

Creator ID HsNP

Type ID libr

Library database name NetPrefLibrary

Library name HsNetPrefLibrary.lib

Header files NetPrefUtils.h

NetPrefLibrary.h

NetPrefLibTypes.h

NetPrefLibErrors.h

NetPrefLibTarget.h

NetPrefLibFieldInfoTable.h

Chapter 6 Data Communications

78 Palm Developer Guide, Palm OS Platform, Rev. J

The following are examples of Preference Panel displays.

The Sprint Treo 700p and Treo 755p smartphones includes an option that lets a user
decide whether or not they want to interrupt an active data connection with an
incoming call, or if the call should be sent to voicemail. See the following screens for
settings.

To set this option in the Network Preferences panel, users must select Network >
drop-down menu > Options > Preferences. Whether a user sets this feature or
not, an application does not need to account for it in any way.

NOTE: Of the three options on the Preferences form, only the option, “Send voice
calls to voicemail during active Power Vision data connection” is new to the Sprint
Treo 700p smartphone only. This option is not available for Verizon.

NetPref Library API

 Palm Developer Guide, Palm OS Platform, Rev. J 79

The Network Preference panel supports the legacy Network Preference panel’s
limited launch code API, such as enumerating profile names, getting or setting the
default profile, and so forth. Applications such as the HotSync application use this API
to select the appropriate network preference profile. This implementation provides
full backward-compatibility with the legacy API.

■ sysAppLaunchCmdPanelCalledFromApp

Displays the network panel as if it were a dialog box popped up from the calling
application, returning to the calling application when the dialog box is dismissed
by tapping the Done button, for example.

■ svcCFACmdQuickEdit

Manifestation of sysAppLaunchCmdPanelCalledFromApp that brings up the
“quick- edit” form of the panel, such as the phone number form for a dial-up
service profile.

– sysSvcLaunchCmdSetServiceID - Sets the default service.

– sysSvcLaunchCmdGetServiceID - Gets the default service.

– sysSvcLaunchCmdGetServiceList - Gets a list of service names and
corresponding IDs.

– sysSvcLaunchCmdGetServiceInfo - Gets the service name when the unique ID
of the service is given.

– sysSvcLaunchCmdGetQuickEditLabel - Gets the “quick-edit” value string to
display to the user, such as the phone number value from a dial-up
service profile.

NOTE: The network preference database has been restructured to support the new
parameters needed by the persistent data connection. Any preexisting application
that reads, creates, or modifies network services or profiles directly in the original
Palm OS network preference database will probably not work with the products
that support the latest architecture. If standard Palm OS 3.5 APIs were used, such
applications might still work. Legacy profiles are supported because they are
converted to the new structure of the database the first time they are accessed.
To create or read network profile information in new applications, use the NetPref
Library. The library provides all the necessary routines to interface with the network
preference database. There is no longer any need to read/write directly to the
network preference database.

Chapter 6 Data Communications

80 Palm Developer Guide, Palm OS Platform, Rev. J

6.2 NetMaster library API
Available on:
■ Centro™ and Treo™ smartphones

This section describes in detail the NetMaster library features and APIs.

Palm created the NetMaster library to:

■ Provide better support for handling and managing network logins, network
service connections, network context, and session controls needed by network
applications in the Palm smartphones.

■ Allow multiple concurrent applications or tasks to detect, log in, preempt, and
switch network profile connections.

Palm® designed the NetMaster library API to work around the limitations of the
current Palm OS® network architecture. For example, the MMS application, running
in the background, may receive a trigger and need to log in with the MMS APN
(network profile), while the browser application has NetLib open with the Internet or
browser-specific APN. NetLib does not provide a way to arbitrate between the needs
of both applications. Thus, NetLib could not support multiple concurrent data
sessions over the same network interface (network profile).

The NetMaster library API attempts to bridge the gap by keeping track of the current
NetLib usage by various tasks and making intelligent decisions allowing when a
particular network profile connection request may preempt and shut down another
previously active profile. This API also attempts to simplify and make more robust the
process of logging in with a network profile that is not the “default” network profile.
Before this API, applications had to get the current default network profile ID, set a
new default, call NetLibOpen, do their networking, and then restore the default ID.
This works if there is only single data networking application at a time. However,
with multiple concurrent clients possibly running different tasks, system data
integrity (current or default profile ID) is susceptible due to ill-managed multiple
writers, system reset, or system crash.

NOTE: The NetMaster library API is not intended for all networking applications. It is
intended to be a temporary solution to a temporary limitation in Palm OS software’s
Network library. Future versions of Palm OS software or NetLib may make it
impossible or unnecessary for this API to be supported, and it would then be
deprecated.

Most networking applications that connect using the “default” network profile (as
selected in the Network Panel) should continue to use the standard NetLib API
(NetLibOpen and NetLibClose) in order to remain compatible with future releases of
Palm OS software.

NetMaster library API

 Palm Developer Guide, Palm OS Platform, Rev. J 81

6.2.1 Usage model
This section details important information and guidelines for using the NetMaster
library API:

■ Only the Motorola 68K version of the NetMaster Data Session Control API is
provided. However, ARM code may call this API using the Palm OS software 5.x
PACE API, including PceSysLibFind68Klibrary and PceCall68KlibRoutine.

■ Do not intermix the NetMaster Data Session Control API with NetLib’s session
control API, which includes NetLibOpen, NetLibOpenConfig,
NetLibOpenIfCloseWait, NetLibClose, NetLibConnectionRefresh, NetLibIFUp,
NetLibIFDown, NetLibIFAttach, and NetLibIFDetach. You must use either the one
set of session control API or the other, exclusively.

■ The NetMaster Data Session Control API works closely with the NetPref Library.
Applications first look up the desired network profile record using the NetPref
Library API, and then provide this record’s ID to NetMasterSCNetAttach via the
netPrefRecID parameter. This API only works with network profiles that are
managed by the NetPref Library. Other profiles are not supported.

■ The design of the NetMaster Data Session Control API is based on the concepts of
data sessions and data contexts. A given data session represents an established
(logged-in) data session via a specific network profile ID. An active data session is
one that is believed to be logged in; otherwise, it is inactive. A given data context
represents a client (an executable such as an application or library) that
successfully attached to a data session by calling NetMasterSCNetAttach.

■ Multiple data contexts may be “attached” to a single data session. The Data
Session Control API provides functions that operate on both data contexts
and data sessions. Most clients utilizing this API use the functions
NetMasterSCNetAttach, NetMasterSCNetDetach,
NetMasterSCSessionIDGetFromContext, and NetMasterSCSessionIsActive.
The remaining functions are mainly for troubleshooting purposes.

■ A client begins networking over a particular network profile by calling
NetMasterSCNetAttach() with the desired network profile ID and other
specialized parameters. The client uses NetMasterSCNetAttach instead of NetLib’s
NetLibOpen or NetLibOpenConfig. If there is already an active data session
where the requested network profile ID is either the primary or fallback profile,
NetMasterSCNetAttach attaches the caller to that data session. See the NetPref
API documentation for definitions of primary and fallback profiles.

If, on the other hand, the active data session was established from a different
network profile, NetMasterSCNetAttach employs an internal algorithm to see
if it can preempt (shut down) the active data session, and to do so if it can. If it
cannot make room for a new data session by tearing down an existing data
session, the function fails.

If there is no active data session or if one was successfully shut down to make
room for the new data session, NetMasterSCNetAttach attempts to establish a
new data session with the requested network profile, and attach the client to that
data session. If it’s successful, NetMasterSCNetAttach returns an error code of
0 and a nonzero Context ID of a newly created data context that is attached to the
data session. The returned Context ID may be passed to other functions of this
API family that require a data context ID. This data context ID is valid only until

Chapter 6 Data Communications

82 Palm Developer Guide, Palm OS Platform, Rev. J

you destroy it by calling NetMasterSCNetDetach. Once the Context ID is destroyed,
it must not be passed to any functions.

If NetMasterSCNetAttach fails, you may need to retry at a later time. The error
code netErrAlreadyOpenWithOtherConfig indicates that NetMasterSCNetAttach
could not preempt another active data session. Other nonzero error codes
are typically either NetLib or NetMaster library error codes. When the
client has finished using the network session that was acquired with
NetMasterSCNetAttach, such as when exiting the networking application
or terminating its task, the client must destroy the data context by calling
NetMasterSCNetDetach. Users of the NetMaster Data Session Control API
call NetMasterSCNetDetach instead of NetLibClose.

■ Once attached to a data session, the client may periodically call
NetMasterSCSessionIsActive to check if that session is still logged in.
NetMasterSCSessionIsActive takes a data session ID as a parameter. Call
NetMasterSCSessionIDGetFromContext to get the data session ID from a
valid data context ID. If it reports that the data session is not active, this means
that the data session was shut down for some reason, such as loss of network
coverage for an extended time, wireless mode being turned off, preempted
by another client requesting a different network profile, and so on. When this
occurs, you should destroy the data context by calling NetMasterSCNetDetach,
since this API has no concept of data session reactivation. If you need to resume
your data session, you need to get a new data context via NetMasterSCNetAttach,
as discussed previously.

■ If the anchor timeout that the application initially requested when calling
NetMasterSCNetAttach is now bigger than necessary, the application must
reduce its anchor timeout to the minimum acceptable value by calling
NetMasterSCContextAnchorTimeoutSet so that other services may be
activated more quickly when necessary.

6.2.2 Loading the library
The NetMaster Library is designed as a Palm OS shared library. The system software
preloads the NetMaster library at system reset/startup before broadcasting the
sysAppLaunchCmdSystemReset launch code. Clients of the NetMaster library should
only call SysLibFind (netMasterLibName,...) to get a library refNum of NetMaster.
If SysLibFind returns a nonzero error, clients must assume that NetMaster was not
loaded for a good reason (such as when the user performs a safe reset), or that
NetMaster is simply not present on the system, and fail gracefully.

NOTE: Clients must not load NetMaster themselves such as via SysLibLoad or
SysLibInstall. Keep in mind that if the system didn't load it, there was a good
reason.

NetMaster library API

 Palm Developer Guide, Palm OS Platform, Rev. J 83

The following code sample demonstrates how to use the NetMaster library.

UseNetMasterLibrary(UInt16* libRefP)
{

Err error = 0;
Err ifErrs = 0;

// Routine is pointless without this parameter
if (!libRefP)

return memErrInvalidParam;

// Get the NetMaster Library
error = SysLibFind("HsNetMasterLibrary.lib", libRefP);
if (error)
{

//It’s not already here—don’t load it:
//there is a good reason it’s not loaded

}
return error;

}

6.2.3 Library information
The following table contains the attributes of the library and related information.

NOTE: The library code is compiled for structures to be aligned on 2-byte
boundaries. This is especially important for CodeWarrior users, as the default setting
might not be compatible.

Description Attribute Comment/Description

Creator ID HsNM

Type ID libr

Library’s database name NetMasterLibrary

Library name HsNetMasterLibrary.lib

Header files NetMasterLibrary.h

NetMasterLibErrors.h

NetMasterLibTarget.h

NetMasterLibTraps.h

By including
NetMasterLibrary.h you
are effectively including the
other files.

Chapter 6 Data Communications

84 Palm Developer Guide, Palm OS Platform, Rev. J

6.3 Email client best practices
This section details general best practices for email client behavior, especially for
working with MMS.

■ If the NetMaster Library is present on the device, the network session should be
established using NetMasterSCNetAttach with Low Priority (not Default Priority).
Otherwise, if the device does not have the NetMaster Library, use NetLibOpen.

■ The email client should never assume that it is the only networking application
running, or that it is the most important application running. It should NOT force
a network interface to shut down or detach.

■ If the NetMaster Library is present on the device, use NetMaster APIs to create the
data context. Otherwise, use NetLib. If the attempt fails, the email client should try
again later rather than force the system to bring up PPP over the session it needs.

■ The email client should be registered for NetLib media up and down notifications.
When appropriate, it should check if PPP is up or down using NetLibMaster APIs
and find out what service is currently associated with the PPP connection using
NetLibIFSettingGet.

HTTP library

 Palm Developer Guide, Palm OS Platform, Rev. J 85

6.4 HTTP library
Available on:
■ Centro™ and Treo™ smartphones

■ LifeDrive™ mobile manager

■ Tungsten™ T5, Tungsten™ E2, and Palm® T|X handhelds

The HTTP library is a shared library. This HTTP library was added to Palm OS software
5.X to give applications a high-level interface to implement HTTP access.

The HTTP library is used by the Palm Blazer® web browser and other applications.
Third-party applications can share and use the HTTP library to implement their own
HTTP access requirements, however, they should not access the HTTP library at the
same time. To indicate this, an error message has been added with the Treo 680
smartphone. For more information, see Section 6.4.3 on page 87.

The HTTP library supports HTTP protocol versions 1.0 and 1.1 and the WAP 2.0 HTTP
client profile. The HTTP library also supports SSL using the Palm OS SSL library for
secure (HTTPS) connections, proxy configuration, and cookies.

6.4.1 Architecture
The HTTP library is provided at the Palm OS library level. It is implemented at a peer
level with the Palm OS NetLib library and SSL library. Applications must call the
NetLib library to initialize and enable the TCP sockets for the HTTP library. It will call
the SSL library directly to implement authentication and cryptography necessary for
secure access. So, after the NetLib library is initialized in the standard way, the
applications will directly call into the HTTP library to implement all HTTP access.

The following figure illustrates the architecture of the HTTP library.

Network Library

ISP
(usually carrier provided)

Website
Gray:

Not provided or
changed by
Handspring

White:
Handspring has

changed or added
these

Blazer
(and/or other 3rd party app)

(68K)

HTTP Library
(ARM) SSL Library

IOTA
(68K internal app)

Palm

Palm

Chapter 6 Data Communications

86 Palm Developer Guide, Palm OS Platform, Rev. J

6.4.2 Functional highlights
The HTTP library is designed to be shared by multiple applications, though it is not
re-entrant and should not be actively called by more than one application at a time.
If the HTTP library is already being used by an application, and another application
calls the HTTP library with HS_HTTPLibOpen(), the applications may crash.

The HTTP library is implemented as a single instance running in the execution task
of caller applications. The library does not launch any additional tasks and is safe to
use as a background task, because it does not display a user interface. The library
does provide the necessary callbacks to allow applications to handle a user interface
in the application code, if necessary.

The HTTP library requires applications to handle the NetLib library interface by
passing the HTTP library a reference to NetLib wrapper function callbacks. The HTTP
library intelligently manages the pool of sockets. The library provides the calling
application an API to specify the maximum number of sockets used by the HTTP
library.

The HTTP library supports the following:

■ HTTP versions 1.0 and 1.1 as defined in RFCs 1945 and 2616, and the WAP 2.0 HTTP
client profile

■ Basic, digest, and proxy authentication as specified in RFC 2617

■ SSL (HTTPS) connections

■ GZIP and Zlib (using deflate) compression formats

■ Chunked encoding allowing applications to begin sending data before the
application knows the total amount of data to be sent

■ Individual application user agent profile - An application can control the user
agent profile by adding a simple string or WAP 248 UA Prof to the request header.

■ Keep-alive connections - Keep-alive connections are not shared among
applications. Different sockets are used for multiple keep-alive connections. For
example, two sockets are used to open two separate connections to
www.yahoo.com.

■ Non-blocking sockets

http://www.yahoo.com

HTTP library

 Palm Developer Guide, Palm OS Platform, Rev. J 87

6.4.3 httpErrorLibraryAlreadyOpen error message for Treo™ 680
smartphones

To assist in preventing application crashes, HS_HTTPLibConst.h has been updated
with an error message. As of the release of the Treo 680 smartphone, if an application
has already opened the HTTP library with the call HS_HTTPLibOpen(), any other
application that makes the same call will be returned the error
httpErrorLibraryAlreadyOpen. This error message will also be included in future
maintenance releases.

For example, if a user is using the Blazer web browser to access the Internet, and a
background application, such as MMS tries to open the HTTP library, the background
task will receive the error httpErrorLibraryAlreadyOpen and the HTTP library will
not be opened. This example is illustrated in the following code sample:

Err err = HS_HTTPLibOpen();

if(err!= httpErrorOK)

{

ErrNonFatalDisplay(''error opening the httplibrary; it is already in use;
please try again later'');

}

6.4.4 HTTP library interface to SSL
Palm OS 5.x and later includes two security-related shared libraries: the SSL library
and the Cryptography Provider Manager. These two libraries provide sufficient crypto
functionality to negotiate secure SSL connections with most secure websites.

The SSL library in Palm OS 5.x and later includes:

■ SSL protocol implementation, version 3 only—not SSL v2 or TLS v1

■ RSA public/private key algorithm for key exchange

■ RC4 symmetric cipher for bulk data encryption

■ Authentication of the server-side of the connection using digital certificates and
signature verification

■ Message verification using the MD5 and SHA-1 hash algorithms

■ SSL session resumption

The SSL library in Palm OS software supports four SSL cipher suites:

■ sslCs_RSA_RC4_128_MD5

■ sslCs_RSA_RC4_128_SHA1

■ sslCs_RSA_RC4_56_SHA1

■ sslCs_RSA_RC4_40_MD5

The first two cipher suites include a connection that uses the RC4 symmetric cipher
with a 128-bit key for data encryption, the RSA algorithm for key exchange, and either

Chapter 6 Data Communications

88 Palm Developer Guide, Palm OS Platform, Rev. J

the MD5 or the SHA1 hash algorithm for verifying message integrity. These two
cipher suites are widely supported by popular web servers on the Internet.

The other security-related library included in Palm OS software is the Cryptography
Provider Manager (CPM). The CPM exports an API that allows you to perform specific
cryptographic operations. The CPM in Palm OS software provides access to the
following:

■ RC4 symmetric cipher, variable key length

■ SHA-1 hash algorithm

■ Message verification

6.4.5 HTTP library use of certificates/public key infrastructure
The HTTP library reads a set of root certificates from a database on start-up. These
root certificates identify each of the major certificate authorities and are used by the
HTTP library during SSL connection establishment to authenticate the remote web
server. The database containing the root certificates is burned into the ROM with the
HTTP library.

Certain large corporations and institutions act as certificate authorities and issue their
own certificates. Such an organization then uses certificates signed using its self-
issued root certificate to identify its secure web servers. In order for a user’s web
browser to negotiate a secure SSL connection with a web server identified by the
certificate, the user must add the corporation’s self-issued root certificate to his or her
web browser’s set of trusted root certificates. The HTTP library does not include a
native mechanism that allows the user to add trusted root certificates to the
certificate database on the user’s device. However, you can design your calling
application to check the remote server’s certificates and display a UI to add them as
trusted.

6.4.6 HTTP library implementation
The HTTP library APIs can be categorized into these four groups:

1. Palm OS library management - The Palm OS library management APIs include
functions to open, close, sleep, wake, or count the HTTP library.

2. Library initialization and finalization - The initialization and finalization APIs
include functions to load, open, initialize, close, and remove the HTTP library.

3. Stream operations - The stream operation APIs include functions to create,
configure, send, and receive requests and responses. They also include functions
to load, open, initialize, close, and remove the HTTP library.

4. SSL - The SSL category APIs include functions to authenticate, certify, encode, and
decode secure connections.

See the Palm API Guide, Palm OS Platform for more details about the available HTTP
APIs.

HTTP library

 Palm Developer Guide, Palm OS Platform, Rev. J 89

6.4.7 General HTTP program information
The following pseudo code demonstrates the usage model of a typical client
application using the HTTP library:

Library Open
find or load HTTP library

Library Initialize
Initialize global environment variables: application,
netlib, peer
Open NetLib library
Initialize HTTP library.
Set up connection time-outs
(Confirm certification)
(Set proxy)

Stream Create
Stream Initialize
Stream Send Request and Read Response

Send request
Loop on Read Response until Read terminates

Stream Close
Library Finalize
Library Close

6.4.7.1 Initialization
The following sample code demonstrates the HTTP library initialization. The sample
code shows that the initialization includes opening both the HTTP library and the
NetLib library, setting all the callback for calling NetLib’s TCP socket functions, and
setting the application execution environments through the three global variables
structures—struct HS_HTTPLibNetInfo, struct HS_HTTPLibPeer, and struct
HS_HTTPLibAppInfo.

The application’s SSL certificate, proxy connection, and connection timeouts are also
initialized.

void HTTPLibInitialize(void)
{
err = HS_HTTPLibOpen(gRefNum);

/* gPeer */
MemSet(&gPeer, sizeof(HS_HTTPLibPeer));0
gPeer.HS_HTTPLibPeerTCPOpen = &PrvTCPOpen;
gPeer.HS_HTTPLibPeerTCPClose = &PrvTCPClose;
gPeer.HS_HTTPLibPeerTCPIsConnected = &PrvTCPIsConnected;
gPeer.HS_HTTPLibPeerTCPConnect = &PrvTCPConnect;
gPeer.HS_HTTPLibPeerTCPRead = &PrvTCPRead;
gPeer.HS_HTTPLibPeerTCPWrite = &PrvTCPWrite;
gPeer.HS_HTTPLibPeerTCPCanReadWrite = &PrvTCPCanReadWrite;

gAppInfo.maxSockets = 3;
gAppInfo.isForeground = true;
gAppInfo.cookieMaxJarSize = (UInt16)300 * (UInt16)1024;

PrvPeerTCPInitialize();
gLibHandle = HS_HTTPLibInitialize(gRefNum, &gAppInfo, &gNetLibInfo,

&gPeer);

Chapter 6 Data Communications

90 Palm Developer Guide, Palm OS Platform, Rev. J

/* set callbacks */
//HS_HTTPLibSetSSLServerCertConfirmProc(gRefNum, gLibHandle,

&test_confirm_cb, (HS_HTTPLibOpaque)gLibHandle);
//HS_HTTPLibSetTunnelingCallback(gRefNum, gLibHandle,
&PrvTunnelingCallback, NULL);

/* set timeout time */
HS_HTTPLibSetConnectTimeOut(gRefNum, gLibHandle, -1);
HS_HTTPLibSetReqTimeOut(gRefNum, gLibHandle, -1);
HS_HTTPLibSetRspTimeOut(gRefNum, gLibHandle, 10 * 1000);

/* set proxy info if used*/
//HS_HTTPLibSetProxy(gRefNum, gLibHandle, ProxyHost,
StrLen(ProxyHost), ProxyPort, ProxyPort, NoProxyHost, 0);
//HS_HTTPLibSetUseProxy(gRefNum, gLibHandle, true);

}
................
................

/* Wrappers for NetLib callbacks */
void PrvPeerTCPInitialize() {.... NetLibOpen(.... }

Int32 PrvTCPOpen() {..... NetLibSocketOpen(.... }

void PrvTCPClose() { NetLibSocketClose(.... }

Int32 PrvTCPIsConnected() {.... NetLibSelect(.... }

Int32 PrvTCPConnect() {.... NetLibSocketConnect(.... }

Int32 PrvTCPRead() {..... NetLibReceive(.... }

Int32 PrvTCPWrite() {.... NetLibSend(.....}

Int32 PrvTCPCanReadWrite() {.... NetLibSelect(.... }

6.4.7.2 Finalization
The following sample code demonstrates the HTTP library finalization. The
finalization appears as a short sequence of freeing memory and closing the NetLib
and HTTP libraries.

void HTTPLibInitialize(void)
{
HS_HTTPLibFinalize(gRefNum, gLibHandle);
PrvPeerFinalize();
HS_HTTPLibClose(gRefNum, &count);
}

void PrvPeerTCPFinalize() { NetLibIFDown(.... }

HTTP library

 Palm Developer Guide, Palm OS Platform, Rev. J 91

6.4.7.3 Processing Loop
The HTTP library does not contain an internal processing loop, so applications should
implement a processing loop to send and receive incoming stream data. Applications
can implement the processing loop as a state machine that models the sequence of
communication between the client and the server through the HTTP protocol. The
following example shows how an HTTP sequence is modeled into a state machine.

Common HTTP accesses follow this sequence pattern:

1. Generate an HTTP request and send the request.

2. Read the response header.

3. Read the content of the data stream.

4. Continue reading content until the end or until an error occurs.

5. Close the stream connection.

Applications can define the preceding state transitions into the state machine to
process streaming data.

Applications can also implement the following state transition pattern for successful
HTTP accesses in the state machine:

1. Initiate the state machine with a request creation with the state
kDownloadState_Request.

2. Through the state machine, send a request out and switch the state to
kDownloadState_ReceiveHeader.

3. Read the initial response and header and then transition to the state
kDownloadState_ReceiveContent.

4. Continue to loop and read the response until the data is complete, and then
transition to the state kDownloadState_Close.

5. Close the stream and switch to the state kDownloadState_Done.

6. Exit with the condition httpErrorOK.

An error can occur during the state kDownloadState_Request_xyz or
kDownloadState_Receive_xyz when switching to the state kDownloadState_Error,
kDownloadState_Cancel, or kDownloadState_Abort. These states trigger a loop exit,
and the appropriate error conditions are recorded.

The sample code in the Palm sample application call HTTPLibTest includes code for
an application’s processing loop to send an HTTP request and receive the response
through a state machine. This processing loop can be modified to adapt to other
applications. Refer to the HTTPLibTest project.

The flowchart on the following page illustrates how an HTTP sequence is modeled
into a state machine.

Chapter 6 Data Communications

92 Palm Developer Guide, Palm OS Platform, Rev. J

Net Services API

 Palm Developer Guide, Palm OS Platform, Rev. J 93

6.5 Net Services API
Available on:
■ LifeDrive™ mobile manager

■ Tungsten™ C and Palm® T|X handhelds

This section provides reference information for the Net Services API. You can use the
functions in this API to check a handheld’s radio hardware, to add or change network
user profiles, and to implement other 802.11 network service tasks.

The NetServices library is available only on handhelds equipped with Wi-Fi (wireless
fidelity), either through built-in hardware resident on the device or through a Wi-Fi
add-on accessory.

The Net Services API is declared in the header file PalmNetServices.h. The Net
Services API also uses data structures declared in the header file PalmWiFiCommon.h.

6.5.1 Overview of the Net Services feature
Handhelds that include Wi-Fi functionality include a panel that allows users to add
network profiles in order to connect to different 802.11 Internet access points. Users
can choose different profile names, SSIDs (service set identifiers), encryption
methods, and other profile characteristics based on the requirements of the access
points and on their own personal preferences.

Using the Net Services API, you can create your own panel to allow users to create
profiles, to specify encryption methods, and to connect to access points.

NOTE: The Net Services API does not provide a method to add profiles to the
existing Wi-Fi panel. If you create a Net Services application, you must design your
own panel to display and create profiles, connect to access points, and so forth.
Furthermore, if you plan to add, delete, or modify your own separate set of profiles,
you should design your own panel because the default Wi-Fi panel may overwrite the
profiles you create and modify. If you simply want to replace the default Wi-Fi panel,
set the creator ID and panel type to that of the default Wi-Fi panel.

Chapter 6 Data Communications

94 Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

 Palm Developer Guide, Palm OS Platform, Rev. J 95

CHAPTER 7

7. HTML Library

This chapter provides reference information on the HTML library, including its usage
model, architecture, and features.

Available on:
■ Centro™ and Treo™ smartphones

■ LifeDrive™ mobile manager

■ Palm® T|X™ handheld

The HTML library is a shared library, added to enable applications to render data. It is
only available on the devices listed at the beginning of this chapter. The HTML library
API is declared in the header file HtmlLib68K.h. For more information, refer to the
Palm API Guide, Palm OS Platform at http://pdn.palm.com.

7.1 Architecture
The HTML library is provided at the Palm OS® library level. It is used by VersaMail®
and Messaging applications. The following figure shows the architecture of the
HTML library.

Messaging

VersaMail

Your
Application

HTML
Library

Blazer

HTTP
Library

Chapter 7 HTML Library

96 Palm Developer Guide, Palm OS Platform, Rev. J

7.2 Usage model
When using the HTML library, keep the following details in mind:

■ Only one application should be using the HTML library at a time. When the
browser is running, other applications cannot use the HTML library. Conversely,
when another application is using the HTML library, the browser should not be
running.

■ The HTML library does not support frames, iframes, forms, and JavaScript.

The following steps demonstrate the usage model of a typical application using the
HTML library. For more information, refer to the sample code HtmlLibTest68K in the
Sample Code section of the SDK.

1. Find and load the HTML library:

Err SysLibLoad (UInt32 libType, UInt32 libCreator, UInt16 *refNumP)

2. Open the HTML library:

Err HTMLLibOpen (UInt16 refnum)

3. Initialize the HTML library:

MemHandle HtmlLibInitialize (UInt16 refnum, RectangleType bounds,
Err *errP)

4. Set up callback functions as needed:

■ typedef void HtmlLibLinkSelCallback (MemHandle htmlLibH, Char *url, void

*cbData)

■ typedef Boolean HtmlLibScanPhoneNumberCallback (MemHandle htmlLibH, Char
*buffer, Int32 length, Int32 *patternStart, Int32 *patternEnd)

■ typedef void HtmlLibInclusionCallback (MemHandle htmlLibH, Char *url,

void *cbData)

■ typedef void HtmlLibSubmitFormCallback (MemHandle htmlLibH, Char *url,
HtmlSubmitFormMethod method, Char *query, void *cbData)

5. Create content data objects as needed:

MemHandle HtmlLibCreateContentObject (UInt16 refnum, MemHandle htmlLibH)

6. Add image/text data:

■ Err HtmlLibAddTextData (UInt16 refnum, MemHandle contentH, Char *url,

Char *mimeType, Char *charset, void *data, Int32 dataLen)

■ Err HtmlLibAddImageData (UInt16 refnum, MemHandle contentH, Char *url,

Char *mimeType, void *data, Int32 dataLen)

7. Render as needed:

void HtmlLibRenderData (UInt16 refnum, MemHandle contentH)

8. Destroy content data objects:

void HtmlLibDestroyContentObject (UInt16 refnum, MemHandle contentH)

NOTE: Make sure to call HtmlLibAbortRenderData before destroying a content
object.

Image rendering

 Palm Developer Guide, Palm OS Platform, Rev. J 97

9. Finalize the HTML library:

void HtmlLibFinalize (UInt16 refnum, MemHandle htmlLibH)

10. Close the HTML library:

Err HtmlLibClose (UInt16 refnum)

11. Unload the HTML library:

SysLibRemove()

7.3 Image rendering
For HMTL content that includes images, the application can provide the image
content to the HTML library in one of the following methods:

1. Provide image content(s) with InclusionCallback. To do so, call
HtmlLibAddImageData when HtmlLibrary calls InclusionCallback.

2. Provide image content(s) by calling HtmlLibAddImageData before
HtmlLibRenderData. This method is particularly useful if the HTML content
contains a lot of images and you do not want the application to show “no image”
icons. This way, the image content(s) are provided to the HTML library before the
page starts rendering.

7.4 Debugging
If you have trouble rendering data, use the following steps to troubleshoot:

1. Try sending the HTML code you are trying to render to the Blazer® web browser
programmatically using the Exchange Manager or a filestream. If it crashes the
Blazer application, there is a bug in the HTML Renderer.

2. Modify the HTML library sample code to render the same HTML.

3. Recompile. If it crashes the sample code but not the Blazer application, there
is probably a bug in the HTML library.

4. If it works in both the Blazer application and the sample code, but crashes your
application, it is something that you are doing differently from the sample code,
and you should investigate this difference.

5. Try rendering your HTML from the SD card using the Blazer web browser. First,
make sure that the browser is in optimized mode. To render your HTML from the
SD card, use the following path:

file:///<OPTIONAL_SDCARDNAME>/<OPTIONAL_PATH>/filename

If the content renders correctly, there may be a bug in your application.

NOTE: Link walking is only supported in the table unrolled version of the HTML
library. If you use the header <META NAME="HandheldFriendly" content="True">
then you are not in optimized mode, and link walking will not work.

For more information on general debugging issues, refer to Chapter 13.

Chapter 7 HTML Library

98 Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

 Palm Developer Guide, Palm OS Platform, Rev. J 99

CHAPTER 8

8. Telephony

This section provides reference material for the Telephony APIs in the Palm OS® SDK.

8.1 Overview of the Telephony API libraries
Available on:
■ Centro™ and Treo™ smartphones

The HsPhone.h header file provided in the Palm OS SDK contains all the public files
referenced in this section, including all constants, structure definitions, and function
prototypes. For more details, refer to the Palm API Guide, Palm OS Platform at
http://pdn.palm.com.

The telephony libraries include the following categories:

The telephony libraries depend on a set of mostly common structures, types, and
enumerations. You can also look at the latest version of the header files in the Palm
OS SDK for the most up-to-date definitions.

NOTE: The Palm Telephony library does not support third-party applications
that control phone calls directly. The supported method is to use the helper
application described in Section 8.2.3 on page 107.

Phone library
category

Description

SMS Functions that apply to sending, receiving, and managing SMS
messages. Declared in HsPhoneSMS.h.

GSM Functions that apply to GSM products with some functions that
apply to both GSM and CDMA products. Declared in
HsPhoneGSM.h.

CDMA Functions that apply only to the CDMA product. Declared in
HsPhoneGSM.h.

Chapter 8 Telephony

100 Palm Developer Guide, Palm OS Platform, Rev. J

Because the telephony libraries contain so many different enumerations, structures,
and types, the telephony header files are divided into categories so that they are
easier to understand. These categories are defined in the following table.

NOTE: The telephony libraries support the specific requirements of the Palm OS-
based smartphones. Palm smartphones do not support Palm OS telephony functions.
If you want to use the telephony functions on the Palm smartphone, you must use the
Palm Telephony library functions.

Category Description

Library General Palm OS library functions and enumerations related to the
telephony libraries. Declared in HsPhoneLibrary.h.

Network Cellular network types and functions. Declared in HsPhoneNetwork.h.

Developers should have a basic knowledge of how a cellular
network behaves. The following concepts should be familiar to you
if you want to use the Telephony Network APIs:

■ Current carrier versus home carrier

■ How to select the current carrier when more than one is available

■ Phone registration process with the wireless network

■ Interactions with a SIM card

■ Voicemail box interaction from the network

Audio Specific audio definition: ringing profile and slider switch.

Events Telephony events sent to an application that registers for them. Its
main enum is PhnEventCode, which contains the notification
received by a registered application. Refer to the sample code in the
Palm OS SDK.

Security Password Type enumerations.

IOTA Internet Over The Air enumerations.

Misc Other functions. Declared in HsPhoneMisc.h.

Overview of the Telephony API libraries

 Palm Developer Guide, Palm OS Platform, Rev. J 101

8.1.1 CDMA and GSM libraries
Beginning with the Treo 680 with Phone Application 3.0, the GSMLibrary has been
replaced by the PhoneInterfaceLibrary, which is used for both GSM and CDMA. The
PhoneInterfaceLibrary supports the same APIs and functionality as the GSM library.

ThePhoneInterfaceLibrary applies to the Palm Treo 680, 755p and later Palm
smartphones. It supports the same APIs for both GSM and CDMA

For Treo 600, Treo 650, Treo 700p smartphones, the CDMA and GSM Telephony APIs
are almost the same. However, because the actual radio architecture differs, Palm has
two different libraries as defined in the following table. It is important to use the
correct library for the correct radio architecture when using the Telephony APIs.

Library Constant (#define) Value Description

Basic
definition

phnLibDbType 'libr' Database type ID

CDMA and
GSM

phnLibCDMADbCreator 'PIL!' CDMA library creator ID

phnLibCDMADbName ''Phone Library'' CDMA library Database
name

phnLibCDMAName ''Phone Library'' CDMA library name

Library Constant (#define) Value Description

Basic
definition

phnLibDbType 'libr' Database type ID

CDMA

phnLibCDMADbCreator 'HsCL' CDMA library creator ID

phnLibCDMADbName ''Phone Library'' CDMA library Database
name

phnLibCDMAName ''PhoneLib.prc'' CDMA library name

GSM

phnLibGSMDbCreator 'GSM!' GSM library creator ID

phnLibGSMDbName ''Phone Library'' GSM library Database name

phnLibGSMName ''GSMLibrary.lib'' GSM library name

Chapter 8 Telephony

102 Palm Developer Guide, Palm OS Platform, Rev. J

8.1.2 Using indicators
Indicators are available for all Palm OS-based smartphones.

8.1.2.1 GSM Connected indicator
On a Palm smartphone, if you want your application to determine whether the
smartphone is registered with a network, use the Telephony library function
PhnLibRegistered.

You may want your application to update the GSM Connected indicator when the
following phone events occur:

■ phnEvtRegistration

■ phnEvtError

■ phnEvtIndication

– indicationNetworkAvailable

– indicationStartingRadio

– indicationResettingRadio

– indicationPoweringOffRadio

NOTE: To convey whether the phone is connected to a network, the simplest
approach is to use the Palm system Signal gadget. (See Section 14.2.4 on page 280
for more information.) It appears when the phone is connected to a network, and
does not appear when the phone is not connected.

8.1.2.2 Carrier’s name indicator
To retrieve the current carrier’s (or operator’s) name, use the Telephony library
function PhnLibCurrentOperator.

You may want your application to update the Operator’s Name indicator when
the following phone events occur:

■ phnEvtRegistration

■ phnEvtError

■ phnEvtIndication

– indicationNetworkAvailable

– indicationStartingRadio

– indicationResettingRadio

– indicationPoweringOffRadio

8.1.2.3 Voicemail indicator
To retrieve the current status of Voicemail, use the Telephony library function
PhnLibBoxInformation.

You should update the Voicemail indicator in your application when a
phnEvtVoiceMail event occurs. phnEvtVoiceMail events occur when new
voicemail messages are received and when users clear their voicemail.

Overview of the Telephony API libraries

 Palm Developer Guide, Palm OS Platform, Rev. J 103

8.1.3 Using PhnLibRegister
As a general best practice, PhnLibRegister should not be called when an application
is handling PhnLib notifications. This should not be done because by the time PhnLib
notifications are received, the PhnLibRegister function has already been called.

There is no need to register specifically for phnEvtRegistration because if you
register any service, for example phnServiceAll, you will automatically receive
phnEvtRegistration.

When an application re-registers for phnEvtRegistration notifications in its
notification handler, the current notification loop is halted, and the Phone Application
does not receive them. This may cause problems with the Phone Application.

Currently, no error is returned when an application re-registers for notifications.

8.1.4 Getting the Cell ID on Centro™ smartphones
For Centro™ GSM and CDMA smartphones, APIs are available that will allow
developers to retrieve the Cell ID (also known as the Cell of Origin, or COO) and local
area code (LAC) of a phone.

Technically, COO positioning allows a phone to be located based on the closest base
station or tower, and regards this location to be the location of the caller. Applications
can use these general positions to provide location based services (LBS).

8.1.4.1 Centro™ GSM smartphones
The API is in the header Incs\68k\libraries\telephony\HsPhoneGSM.h.

The prototype is as follows:

Err PhnLibGetGSMCellInfo (UInt refNum, UInt32 *pLac, UInt32 *pCellId)

■ pCellId - returns the Cell ID (or COO)

■ pLac - returns the LAC of the caller

This API is GSM specific and is only supported on Centro GSM smartphones. It is not
supported on earlier devices.

8.1.4.2 Centro™ CDMA smartphones
The Centro CDMA smartphone uses an API in the header file Incs\68k\libraries\
telephony\HsPhoneMisc.h.

The prototype of the API is as follows:

Err PhnLibGetBaseStationIdInfo(UInt16 *base_id, UInt16 *sid, UInt16 *nid);

■ base_id - is the Base Station ID

■ sid - is the System ID

■ nid - is the Network ID

Use the test file CDMAStatus.prc to obtain the values returned from the API. This is
available at the PDN Knowledge Base. It displays values for the Cell id (base station
id), system id, and network id.

Chapter 8 Telephony

104 Palm Developer Guide, Palm OS Platform, Rev. J

8.1.5 PhnLibGetMMSUAString()
The PhnLibGetMMSUAString() API is used with Centro Verizon devices only.

It is a new API in the header file Incs\68k\libraries\telephony\
HsPhoneMisc.h for the Verizon MMS application. It returns the MMS User Agent
string.

The syntax is as follows:

Err PhnLibGetMMSUAString(UInt16 refNum, char *pUaStr, UInt32 buf_len);

■ pUaStr - The buffer in which the UA String will be written.

■ buf_len - The length of the buffer so that Phn Lib can ensure that the buffer size
is sufficient to return the UA string. (The current minimum buffer length required
is 32 bytes.)

8.1.6 PhnMsgBoxDataType
The field PhnMsgBoxDataType is specific to Centro devices.

A new priority field has been added to the structure PhnMsgBoxDataType in
Incs\common\libraries\telephony\HsPhoneNetworkTypes.h. This indicates voicemail
priority. The syntax is as follows:

typedef UInt8 PhnMsgBoxPriorityType;
typedef enum
{
 kSmsPriorityNormal,
 kSmsPriorityInteractive,
 kSmsPriorityUrgent,
 kSmsPriorityEmergency,
 kSmsPriorityLast
}
PhnMsgBoxPriorityEnum;

typedef struct
 {
 Boolean indicatorOn; /**< */
 PhnMsgBoxType type; /**< */
 Int16 messageCount; /**< */
 Int16 lineNumber; /**< */
 PhnMsgBoxPriorityType priority; /**< voicemail priority -
example: normal, urgent etc. */
 }
PhnMsgBoxDataType;

Phone Application

 Palm Developer Guide, Palm OS Platform, Rev. J 105

8.2 Phone Application

8.2.1 Phone Application 2.5

Available on:
■ Centro™ smartphones (CDMA only)

■ Treo™ 755p smartphones

■ Treo™ 650 smartphones

Phone Application version 2.5 is written in 68K.

For more information on Phone Application views, see the User Manuals at the Palm
Customer Service and Support website, http://www.palm.com/us/support/.

8.2.2 Phone Application 3.0 and later

Available on:
■ Centro™ smartphones (GSM only)

■ Treo™ 680 smartphones

Treo 680 smartphones include Phone Application version 3.0. Centro smartphones
for AT&T and Rest of World carriers include Phone Application version 3.5.

These versions include a redesigned user interface that integrates the Main, Dial Pad,
Favorites, Contacts, and Call Log views into a more intuitive user experience. Most
changes to the application are transparent to developers, but a few items listed in this
section are different.

Phone App 2.5

Chapter 8 Telephony

106 Palm Developer Guide, Palm OS Platform, Rev. J

The redesigned Phone Application 3.0 interface is shown here in comparison to
Phone Application 2.5:

The Phone Application version 3.0 has been rewritten in ARM, where previously it
was written in 68K. One difference for developers to note is that ARM uses little
endian sequencing method, while 68K uses big endian sequencing.

NOTE: All features in this chapter will work with Phone Application 3.0 except where
noted.

For more information on Phone Application views, see the User Manuals at the Palm
Customer Service and Support website, http://www.palm.com/us/support/.

8.2.2.1 Overlapping gadgets
In Treo 680, support has been added to PmSysGadgetLibrary for overlapping gadgets.
If a gadget is defined with the same boundaries as an existing gadget, it will be given
a lower priority than the previously defined gadget, and will only be displayed if the
other gadget is not visible.

8.2.2.2 Call in Progress gadget
In Treo 680, the overlapping gadget feature is used to display the “Call in Progress”
message above the carrier status gadget. This message indicates that a call is in
progress. This gadget is included in the five main Phone Application views: Main,
Dial Pad, Favorites, Contacts, and Call Log.

Phone App 3.0 Phone App 2.5

Dial Pad Favorites Main Contacts Call Log

Phone Application

 Palm Developer Guide, Palm OS Platform, Rev. J 107

8.2.3 Launching the Phone application in a specific view
This section details how to launch the Phone application on Palm OS-based
smartphones in a specific view. For more information, refer to the Launch Commands
sample code in the Palm OS SDK.

8.2.3.1 Required headers
The headers required to launch the Phone application in a specific view are
as follows:

■ Common/System/HsAppLaunchCmd.h

This header file includes Phone application launch commands and corresponding
launch command parameter structures.

■ Common/System/HsCreators.h

This header file includes the Phone application creator type.

8.2.3.2 Launching the Phone application in Call Log view
To launch the Phone application in the Call Log view, use the
phoneAppLaunchCmdViewHistory launch command as follows:

DmGetNextDatabaseByTypeCreator (true,
 &searchState,
 sysFileTApplication,

 hsFileCPhone,
 true,

&cardNo,
 &dbID);

err = SysUIAppSwitch(cardNo,
 dbID,
 phoneAppLaunchCmdViewHistory,
 NULL /*paramsP*/);

Chapter 8 Telephony

108 Palm Developer Guide, Palm OS Platform, Rev. J

8.2.4 Launching the Phone application in Dial Pad view
When launching the Phone application in Dial Pad view, you can do one of the
following:

■ Launch in Dial Pad view with no number filled in.

■ Launch in Dial Pad view and prefill the number field in the Dial Pad view with
a specified number without automatically dialing it.

■ Launch in Dial Pad view and automatically dial a specified number.

8.2.4.1 Launching without a phone number
Use the following code as reference to launch the Phone application in Dial Pad view
without pre-filling the number field:

DmGetNextDatabaseByTypeCreator (true,
 &searchState,
 sysFileTApplication,

 hsFileCPhone,
 true,
 &cardNo,
 &dbID);

err = SysUIAppSwitch(cardNo,
 dbID,
 phoneAppLaunchCmdViewKeypad,

NULL /*paramsP*/);

8.2.4.2 Launching with the number field prefilled

NOTE: This feature will not work for Centro GSM smartphones or Treo 680
smartphones with Phone Application 3.0.

Use the following code as reference to launch the Phone application in Dial Pad view
and prefill the number field:

PhoneAppLaunchCmdDialPtrparamsP = NULL;
UInt16 size = sizeof(PhoneAppLaunchCmdDialType);
Char* numberP = < PHONE_NUMBER_TO_PREFILL_FIELD_WITH>;

// Setup a parameter block so the Phone application pre-fills
// a phone number in the Dial Pad number field

if (numberP)
 {
size += StrLen(numberP) + 1;
 }

paramsP = MemPtrNew (size);
MemSet (paramsP, size, 0);

Phone Application

 Palm Developer Guide, Palm OS Platform, Rev. J 109

paramsP->version = 1;
paramsP->failLaunchCreator = <YOUR_APP_CREATOR>;
if (numberP)

{
paramsP->number = MemPtrNew (StrLen(numberP) + 1);
StrCopy(paramsP->number, numberP);
MemPtrSetOwner (paramsP->number, 0);
}

DmGetNextDatabaseByTypeCreator (true,
 &searchState,
 sysFileTApplication,

 hsFileCPhone,
 true,
 &cardNo,
 &dbID);

err = SysUIAppSwitch(cardNo,
 dbID,
 phoneAppLaunchCmdViewKeypad,
 paramsP);

8.2.4.3 Launching and automatically dialing a phone number
Use the following code as reference to launch the Phone application in Dial Pad view
and automatically dial a phone number:

PhoneAppLaunchCmdDialPtr paramsP = NULL;
UInt16 size = sizeof(PhoneAppLaunchCmdDialType);
Char* numberP = <THE_PHONE_NUMBER_YOU_WANT_AUTO_DIALED>;

// Set up a parameter block so the Phone application
// automatically dials a phone number

if (numberP)
 {
size += StrLen(numberP) + 1;
 }

paramsP = MemPtrNew (size);
MemSet (paramsP, size, 0);

paramsP->version = 1;
paramsP->failLaunchCreator = <YOUR_APP_CREATOR>;
if (numberP)
 {
paramsP->number = MemPtrNew (StrLen(numberP) + 1);

StrCopy(paramsP->number, numberP);
MemPtrSetOwner (paramsP->number);

 }

MemPtrSetOwner (paramsP->number, 0);

Chapter 8 Telephony

110 Palm Developer Guide, Palm OS Platform, Rev. J

DmGetNextDatabaseByTypeCreator (true,
 &searchState,
 sysFileTApplication,

 hsFileCPhone,
 true,
 &cardNo,
 &dbID);

err = SysUIAppSwitch(cardNo,
 dbID,
 phoneAppLaunchCmdDial,
 paramsP);

8.2.5 Launching the Phone application in the Favorites view
To launch the Phone application in the Favorites view, use the
phoneAppLaunchCmdViewSpeed launch command as follows:

DmGetNextDatabaseByTypeCreator (true,
 &searchState,
 sysFileTApplication,

 hsFileCPhone,
 true,
 &cardNo,
 &dbID);

err = SysUIAppSwitch(cardNo,
 dbID,
 phoneAppLaunchCmdViewSpeed,
 NULL /*paramsP*/);

Launching the Contacts application with the New Contact window open

 Palm Developer Guide, Palm OS Platform, Rev. J 111

8.3 Launching the Contacts application with the
New Contact window open

On Palm OS-based smartphones, you can launch the Contacts application with the
New Contact window open.

The headers required for launching the Contacts application with the New Contact
window open are as follows:

■ Common/System/HsAppLaunchCmd.h

This header file includes Contact application launch commands and
corresponding launch command parameter structures.

■ Common/System/palmOneCreators.h

This header file contains the Contacts application creator type.

To launch the Contacts application with the New Contact window open, use the
addrAppNotificationCreateNewRecord launch command as follows:

notifyParamP = MemPtrNew(sizeof(SysNotifyParamType));

MemSet(notifyParamP, notifyParamSize, 0);

 notifyParamP->notifyType = addrAppNotificationCreateNewRecord;
 notifyParamP->broadcaster = <YOUR_APP_CREATOR>;
 notifyParamP->notifyDetailsP = NULL;
 notifyParamP->handled = false;

DmGetNextDatabaseByTypeCreator(true,
 &searchState,
 sysFileTApplication,
 kpalmOneCreatorIDContacts,
 true,
 &cardNo,
 &dbID);

err = SysUIAppSwitch(cardNo,
dbID,
sysAppLaunchCmdNotify,
notifyParamP);

Chapter 8 Telephony

112 Palm Developer Guide, Palm OS Platform, Rev. J

8.4 EvDO on Palm® smartphones
This section applies to:

■ Centro™ smartphones

■ Treo™700p and Treo™755p smartphones

Treo 700p, Treo 755p, and Centro smartphones are capable of connecting to 1xEvDO
networks. To develop applications for Treo 700p smartphones, keep the following
points in mind.

During a data connection session on a 1xEvDO network, applications should give
priority to an incoming voice call and allow it to interrupt the data session. Unlike
Treo 650 CDMA smartphones, which only support 1xRTT network connections, on the
Treo 700p, 755p and Centro smartphones, it is possible for incoming calls to be
received even when the data network is already connected and not dormant, as
opposed to going directly to voicemail. Wireless applications should take this into
account and perform the necessary work to clean up or record the states of the data
transfer.

Upon voice call disconnect, applications that require an always-on data session could
re-establish the data session and continue transferring data. In order to do this
properly, applications should register for the following phone events:

■ phnEvtStartIncomingCall - This phone event is broadcasted to registered
applications when there is an incoming phone call

■ phnEvtDisconnectInd - This phone event is broadcasted to registered applications
when the voice call is disconnected

■ phnEvtDisconnectConf - This phone event is broadcasted to registered
applications when the voice or data call in conference mode (3-way calling) is
disconnected

8.4.1 Detecting EvDO vs. 1xRTT
Because the Treo 700p, 755p, and Centro smartphones are capable of both EvDO and
1xRTT connections, it may be useful for applications to determine when the device is
using the EvDO connection and when it is using the 1xRTT connection.

When connecting to an EvDO network, the user is shown the icons displayed in the
following table.

To be notified of which connection is being used, the application should register for
phnEvtDataSessionStatus. Once it is registered for the phnEvtDataSessionStatus
event, use its data field to obtain dataSesstionStatus’s session type. Then check
against the PhnDataServiceType enumerations for EvDO.

NOTE: Please note the extra ‘t’ in the spelling of dataSesstionStatus.

Carrier Icon

Sprint

Verizon

Treo 700p Rest of World* carriers

EvDO on Palm® smartphones

 Palm Developer Guide, Palm OS Platform, Rev. J 113

* For the current list of carriers included in the Treo 700p ROW release, visit the Palm
Developer Network (PDN) at http://pdn.palm.com and navigate to the Treo 700p
device page.

Here is an example of detecting the communication type:

switch(pEvt -> eventType)

{

...

 case phnEvtDataSessionStatus:

 if (pEvt -> data.dataSesstionStatus.sessionType == phnDataService1xEVDO)

 // Data session has just switched to EVDO

 if (pEvt -> data.dataSesstionStatus.sessionType == phnDataService1xRTT)

 // Data session has just switched to 1xRTT

...

}
For more details of the structures referenced in the previous example, refer to the
Palm API Guide, Palm OS Platform and to the HsPhoneEvent.h and
HsPhoneNetworkTypes.h header files.

8.4.2 Troubleshooting incoming voice calls
If you application is not handling incoming voice calls correctly, you may see the
following symptoms:

■ The voice call goes to voicemail, but the smartphone briefly displays an incoming
call dialog, then displays a missed call dialog.

This happens because the incoming phone event is already coming through, but
because the wireless application does not give up the handle on time, it is already
too late for the Phone application to accept and connect the call.

■ The wireless application freezes while waiting for data.

This could happen if the wireless application is using a blocking socket with an
infinite timeout, or does not abort when data stops transferring. When an
incoming voice calls interrupts the data session, no more data can be sent or
received. Applications must handle this appropriately by cleaning up, maintaining
the state, registering for phone call disconnect events, and re-initializing variables.

Chapter 8 Telephony

114 Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

 Palm Developer Guide, Palm OS Platform, Rev. J 115

CHAPTER 9

9. SMS

This chapter describes the SMS library usage model.

9.1 What is the difference between SMS and NBS?
SMS stands for Short Message Service. This service allows short text messages to
be sent and received by your mobile phone. An alert is shown every time an SMS
message is received.

NBS stands for Narrow Band Socket. NBS is a special kind of SMS message. If an
SMS message contains //SCK <code> it is treated as an NBS message.

NBS messages on Palm devices are treated in a silent manner. The message
is invisible to the user. No alert is shown to the user when an NBS message is
received, and NBS messages can be silently deleted.

9.2 SMS library
Available on:
■ Centro™ and Treo™ smartphones

The SMS Messaging application is the main interface to the SMS Database and SMS
features on a device. In addition to the SMS application, you can create your own
applications to receive, send, and manage SMS messages.

SMS is a useful way to wake up a device remotely and trigger specific actions that
are defined by your application. For example, an SMS could trigger an email
application to retrieve new email from a corporate server.

Technically, the SMS library is part of the Telephony library, but it is logically a
separate unit. The SMS library relies on functionality from the Telephony library
and uses similar methods.

This chapter describes some of the key features of the SMS library including:

■ Sending messages

■ Receiving messages

■ Encoding

■ Segmenting and reassembling messages

■ Storing messages in a database

Chapter 9 SMS

116 Palm Developer Guide, Palm OS Platform, Rev. J

9.3 What is SMS?
The point-to-point SMS provides a means of sending short messages to and from a
phone. SMS is implemented using a service center that acts as a store and
forwarding center for short messages. The SMS library architecture described
here generally applies to CDMA.

Two point-to-point services are defined in the SMS specification:

1. Mobile originated messages - These messages are transported from a phone
to a service center. They may be destined for other mobile users or an email
gateway.

2. Mobile terminated messages - These messages are transported from the
service center to a phone. They may have originated from another phone or from
a variety of other sources, such as an email application or a website.

A single message sent on the SMS network on CDMA is limited to 160 characters.
Longer messages must be segmented. For message segmentation on GSM, see
Section 9.5.4 on page 120.

9.4 Why use the SMS library?
The SMS library enables the sending and receiving of short messages from a
smartphone to another SMS-enabled recipient.

On Palm smartphones, SMS messages can be sent much more quickly than
messages with a PPP connection. This is because SMS does not require an initial
connection to an ISP. Connecting to an ISP can take up to 10 to 15 seconds, including
modem negotiation time and user authentication.

NOTE: When sending an SMS message, the current SMS library architecture has
a three- to four-second delay before finishing the sending API call. This is due to
radio architecture latency.

Cost is another consideration for using SMS. A typical U.S. service provider charges
15 cents a minute for data service, but only 10 cents for an SMS.

Additionally, SMS messages can be sent directly to a device. They do not require
a client application to dial in to the network to check for new email; instead, the
message is sent directly to the client application. The client can even receive an
SMS message while a voice or data call is in progress.

9.5 Understanding the SMS library
The SMS library takes care of the low-level details of communicating with a device.
All incoming messages are indicated to a registered application using launch codes,
and all successful or unsuccessful message transmissions are indicated with launch
codes.

The SMS library handles the following functions for SMS messages:

■ Sending

■ Receiving

■ Encoding*

Understanding the SMS library

 Palm Developer Guide, Palm OS Platform, Rev. J 117

* This encoding function refers only to character encoding. Currently, only the
GSM alphabet is supported. The GSM alphabet is different from the Palm OS®
alphabet. Additionally, encryption and compression of messages are not
supported in the current version of the SMS library.

NOTE: The current version of the SMS library handles text messages for both the
GSM and CDMA versions of devices. All messages handled by the library are
assumed to be text and are handled appropriately.

The PhoneInterfaceLibrary (previously, the GSM library) can also handle binary
messages, but the CDMA library cannot. If a client application wants to send binary
data on CDMA, it must encode and decode the data properly.

Also, the CDMA version supports only 7-bit ASCII characters, 160 characters
maximum*, no segmentation*.

* On CDMA Treo 600, Treo 650, Treo 700p, Treo 755p, and Centro smartphones

9.5.1 Incoming SMS messages and message events
An application must register itself with the Telephony library in order to receive
incoming message events. Register for the SMS service using PhnLibRegister where
services = phnServiceSMS:

PhnLibRegister (libRef, appFileCreator, phnServiceSMS);

The following diagram displays the workflow of incoming SMS messages.

Register for SMS
Notifications

SMS is Received Handle SMS
Event

Is it
Segmented?

Handle
Segmented SMS

Event

Send to
Messaging
Application

Acknowledged?

No

Yes

Yes/No

Chapter 9 SMS

118 Palm Developer Guide, Palm OS Platform, Rev. J

Each incoming message is indicated to an application by sending a
phnEvtMessageInd event unless it is a segment of a message. In that case, the library
sends a phnEvtSegmentInd event. The library sends a phnEvtMessageInd only after all
of a multisegmented messages’s parts have been received.

If a new message is added to the database, the application is sent the
phnEvtSegmentInd event to trigger an update of the message list. The new message
is saved in the SMS database and stays there until it’s deleted unless the message is
a type NBS message. In that case, the message is deleted after the phnEvtMessageInd
notification is acknowledged by one of the registered applications.

The SMS event comes as a launch code from the Phone library. To detect an incoming
SMS event, use the following code:

switch (eventP->eventType){
 case phnEvtSegmentInd:
 case phnEvtMessageInd:

 …
 eventP->acknowledge = true;
 break;
}

The NBS event comes as a notification from the Notification Manager. To detect an
incoming NBS event, use the following code:

SysNotifyParamType* notifyP=(SysNotifyParamType*)cmdPBP ;
if (notifyP->notifyType == phnNBSEvent){

PhnNBSNotificationEventType* NBSParamP =
(PhnNBSNotificationEventType*)notifyP->notifyDetailsP;

if (NBSParamP->binary) // NBS binary
}

9.5.2 Outgoing SMS messages
To send an SMS message, verify that the Phone is on, that it is registered with the
phone library, and that it is on the network by using the following APIs:

PhnLibModulePowered();
PhnLibRegistered();

Next, get the library reference number using PhnLibGetDBRef().

An SMS message is sent by creating a new outgoing message using
PhnLibNewMessage() and filling in the desired recipient and message text. The owner
and text of the outgoing message is constructed in the following manner:

msgID = PhnLibNewMessage(smsLibRef, kMTOutgoing);
PhnLibSetOwner(smsLibRef, msgID, appFileCreator);
PhnLibSetText(smsLibRef, msgID, message, msgLen);

Understanding the SMS library

 Palm Developer Guide, Palm OS Platform, Rev. J 119

More than one recipient may be specified if the message is being sent to a group. The
recipient address(es) is constructed in the following manner:

addList = PhnLibNewAddressList(smsLibRef);
addressH = PhnLibNewAddress(smsLibRef, address, phnLibUnknownID);
PhnLibAddAddress(smsLibRef, addList, addressH);
MemHandleFree(addressH);

The address is then attached and the message is sent:

PhnLibSetAddresses(smsLibRef, msgID, addList);
error = PhnLibSendMessage(smsLibRef, msgID, true);

NOTE: The PhnLibSendMessage API is not synchronous.

The SMS event itself comes as a launch code from the Phone library. To check the
SMS status of a sent message, use the following code:

case phnEvtMessageStat:
 switch (eventP->data.params.newStatus){

 case kSent:
 PhnLibGetFlags(phnLibRef,

 eventP->data.params.id, &flags);
 if ((flags & kFailed) == 0)… break;

}

The text of an SMS message may be longer than 160 characters. The library
segments and reassembles such messages automatically so that the segmentation is
transparent to the user of the SMS library.

9.5.3 Handling the GSM alphabet and Palm OS® alphabet
A special alphabet is used to encode SMS messages. The text of all incoming and
outgoing messages stored in the message database is encoded using standard
Palm OS encoding.

When a message is received, its encoding is changed from the GSM alphabet to
the Palm OS alphabet. Any missing characters are replaced by substitution strings.
A message is encoded in the GSM alphabet when it is being sent. Optionally,
substitution strings may be converted to their character equivalents. The following
table shows the character with its corresponding substitution string.

GSM Palm OS GSM Palm OS

Δ \Delta Π \Pi

Φ \Phi Ψ \Psi

Γ \Gamma Σ \Sigma

Chapter 9 SMS

120 Palm Developer Guide, Palm OS Platform, Rev. J

NOTE: The client application should not assume that a message contains
160 characters or fewer. Even if the actual message contains fewer than
160 characters, the message’s text may be longer than 160 characters because
characters that are not available on Palm OS are replaced by substitution strings.

9.5.4 Message segmentation
Most mobile phones allow the user to compose messages of no more than
160 characters; however, in GSM, the Messaging application sets the maximum
length of a message to 650 characters. Messages that contain more than
160 characters are segmented.

The SMS library supports three types of segmentation schemes. Two of these
methods are text-based while the third is binary. The binary method is preferred,
because it allows for the reassembly of messages even if they arrive out of order.

9.5.4.1 Binary segmentation
The binary segmentation scheme works by adding a user data header (UDH) to each
segment of a segmented message. The UDH contains a reference number to identify
the message, the segment’s index, and the total number of segments. Because the
UDH takes 6 bytes, the number of characters in a message is reduced to 154.

Using the UDH, it is possible to reassemble messages from their segments even if
the segments arrive out of order. The reassembly of incoming segmented messages
is transparent to the client application. The client application may retrieve a
message’s text even if all the segments have not been received. Use PhnLibGetText
to retrieve the message.

When the first segment of a segmented message is received, the client receives a
phnEvtSegmentInd event after the segment has been stored in the database. When all
of the segments have been received, a phnEvtMessageInd event is sent.

Automatic reassembly of messages works if all parts of the message are received
within six hours after the first segment is received. After six hours, segmentation
information is deleted by the library.

NOTE: The automatic reassembly of messages is a GSM feature. The CDMA version
of products does not support automatic reassembly of segmented messages.

9.5.4.2 Textual segmentation
The SMS library supports two textual segmentation schemes. One segmentation
scheme is used only for sending segmented messages to an email gateway. The
other is used for segmenting regular text messages.

The segmentation scheme used to send messages to an email gateway does not
allow the reassembly of the message if the messages arrive out of order. This scheme
is a recognized GSM standard. It works by inserting “+” signs into the message’s text.

Λ \Lambda Θ \Theta

Ω \Omega Ξ \Xi

GSM Palm OS GSM Palm OS

Understanding the SMS library

 Palm Developer Guide, Palm OS Platform, Rev. J 121

The length of an “inner” segment is reduced to 158 characters, and the length of the
first and last segments is 159 characters. A message with three parts is segmented
as follows:

First segment+
+Inner segment+
+Last segment

NOTE: For messages sent to an email gateway, the recipient’s address adds to
the message’s length.

This segmentation scheme is used exclusively to send messages to an email
gateway. The SMS library does not use this scheme to send text messages to
normal subscribers.

The scheme for segmenting regular messages adds header information to every
segment. The header is of the form i/k, where i is the segment’s index and k is
the total number of segments. The length of the header is not constant and is
dependent upon the values of i and k. A message with three parts is segmented
as follows:

1/3 First segment
2/3 Second segment
3/3 Last segment

The library does not attempt to reassemble messages when they are sent using this
segmentation scheme. The application must reassemble the messages as needed.
The reassembly is not automatically done by the library because the header does
not indicate clearly to which message a segment belongs.

9.5.5 Message database
All incoming and outgoing SMS messages are stored in a message database on
the device except for NBS-type messages. NBS message content is stored in the
paramBlock when the application receives the notification.

An outgoing message stored in the database may be sent using the SMS library.
Incoming messages received are also stored in this database. The SMS library
handles only messages stored in this database. If you want an application to store
the messages in a separate database, you must have the application copy the
messages from the SMS database.

This section describes the fields for a single SMS message. The standard Palm OS
routines for databases are used to manage these records.

IMPORTANT: A message’s internal structure is private and not simple. Client
applications should modify data in an SMS message only by using the functions
provided by the SMS library.

A record in the message database has four separate parts. The first part has a fixed
size, and the size of the other three parts is variable. As a result, a complete record
has a variable size.

Chapter 9 SMS

122 Palm Developer Guide, Palm OS Platform, Rev. J

The four separate parts of a message database record are as follows:

1. Header information

2. Segmentation information

3. Address information

4. Message text

9.5.5.1 Header information
The first part of each record is the message header information. It has a fixed size.
The fields in the header information section of the record are used to store flags and
determine the size of the size[] field. Some fields are not used in all messages. For
example, validity is used only for outgoing messages, and segments is used only
for incoming messages.

The SMS header structure is as follows:

typedef struct {
 UInt32 owner;
 SMSMessageType type;
 SMSMessageStatus status;
 UInt32 date;
 UInt32 flags;
 UInt8 validity;
 UInt8 segments;
 UInt16 size[1];
}SmsHeader;

See the Palm API Guide, Palm OS Platform for details on each field.

9.5.5.2 Segmentation information
The second part of a message record contains segmentation information. This part
is variable in size and is accessed through the size array. Each segment’s size is
represented with 2 bytes.

9.5.5.3 Address information
The third part of a message record contains address information. This part is variable
in size. The size of this address information is defined in the size field. The address
information contains the data in a PhnAddressList structure.

9.5.5.4 Message text
The fourth part of a message record is the actual text of the message. This part is
variable in size. The size is calculated by taking the size of the complete message and
subtracting the sizes of the first three parts. All characters in this part of the record
are considered to be Palm OS encoded. For outgoing messages, the characters are
converted to the GSM alphabet when the message is sent.

NOTE: The conversion of the text is done just before the message is sent. The result
of the conversion is not stored with the message. If sending a message fails, the text
is converted again when the message is sent again.

Launching SMS from the New SMS screen

 Palm Developer Guide, Palm OS Platform, Rev. J 123

9.6 Launching SMS from the New SMS screen
On Palm smartphones, to launch the SMS application in the New SMS screen, use
the Palm OS system Helper APIs.

The HelperServiceSMSDetailsType structure provides the SMS message to be sent.
It is used as the detailsP field in the HelperNotifyExecuteType parameter when the
service class ID is kHelperServiceClassIDSMS.

To prefill the New SMS screen with a phone number or email address, set the dataP
field of the HelperNotifyExecuteType parameter to the string (Char *) representing
the phone number or email address, as explained in the comments below.

Launching SMS from the New SMS screen is detailed in the following code example.

HelperServiceSMSDetailsType smsDetails;

messageH = FldGetTextHandle(messageFldP);
messageP = MemHandleLock(messageH);
smsDetails.version = 1; //The version number for this structure. The current version is 1.
smsDetails.message = messageP; //The string containing the body of the message to be

 //sent or NULL.

HelperNotifyExecuteType execute;
HelperNotifyEventType event;
SysNotifyParamType note;
Err err = errNone;

// If you want the New SMS screen to be prefilled with a phone number or email address,
// then set execute.dataP to the string (Char *) representing the phone number or email
// address. If you do not want the New SMS screen to be prefilled with a number, set
// execute.dataP to be NULL

execute.dataP = "1234567890";

execute.detailsP = &smsDetails;
execute.displayedName = "My SMS app";
execute.helperAppID = 0; // Setting the helperAppID to 0 means "use default helper"
execute.serviceClassID = kHelperServiceClassIDSMS;
execute.err = 0;

MemSet (&event, sizeof(HelperNotifyEventType), 0);
event.version = kHelperNotifyCurrentVersion;
event.actionCode = kHelperNotifyActionCodeExecute;
event.data.executeP = &execute;

MemSet (¬e, sizeof(SysNotifyParamType), 0);
note.broadcaster = <YOUR_APP_CREATOR>;
note.notifyType = sysNotifyHelperEvent;
note.notifyDetailsP = &event;
note.handled = false;

err = SysNotifyBroadcast(¬e);

Chapter 9 SMS

124 Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

 Palm Developer Guide, Palm OS Platform, Rev. J 125

CHAPTER 10

10. System Extensions

This chapter provides details about the system extension features and APIs available
in the Palm OS® SDK from Palm, Inc. These features are differentiations from the
Palm OS SDK from ACCESS.

10.1 Transparency API
Available on:
■ Centro™ and Treo™ smartphone

The Transparency library is used to connect the radio modem directly to one of the
data ports on a Palm smartphone.

The library is the preferred method to enable tethered mode in an application
because it configures the radio in the correct mode to transmit and receive data to
the network. The Transparency API is preferable to directly trying to control the radio
through its lower level serial driver and through the AT command.

It supports diagnostics or tethered mode. It does not support both simultaneously.
See the Palm API Guide, Palm OS Platform for more details.

The diagram on the following page shows a possible architecture for connecting the
Palm smartphone modem to a desktop using tethered mode and the Transparency
library.

Chapter 10 System Extensions

126 Palm Developer Guide, Palm OS Platform, Rev. J

Connecting the Palm smartphone modem to a desktop using tethered mode and the Transparency library.

HotSync
Application

Network Stack
Drivers and Libraries

Modem Driver

Sub-Device Driver

Serial or USB Port

Palm standard
Serial or USB

Driver
(PalmUSBD.sys)

Desktop

Provided by 3rd party Path of data for
Tethered mode

Cradle Serial Driver

Serial
Driver

USB
Driver

Cradle

Tethered Mode
Setup

Application

Pass-through
Library

Palm OS Data App
(accessing TCP/IP

network)

Built-in
Phone App

NetLibrary

Virtual Modem Phone Library

Communication Channel
Provider Library

Radio Serial Driver

Radio
(CDMA or GPRS)

These are
mutually
exclusive

{ }

Palm OS Device

Transparency
Library

File Browser API

 Palm Developer Guide, Palm OS Platform, Rev. J 127

10.2 File Browser API
Available on:
■ LifeDrive™ mobile manager

■ Tungsten™ T5 handhelds

The File Browser API uses the Exchange Manager registry with some enums defined
by ACCESS (formerly PalmSource):

#define exgRegEditCreatorID 0xff7b // creator ID registry
#define exgRegEditExtensionID 0xff7d // filename extension registry
#define exgRegEditTypeID 0xff7e // MIME type registry

These constants are defined in FileBrowserLibCommon.h. Applications should
register using ExgRegisterDatatype with ID exgRegEditExtensionID. The
description of a file type being registered should look like this:

<Icon 1000,1100>Image

The first number is the ID of a bitmap family resource for the large icon provided by
the application. The second number is the ID of the small icon provided by the
application. You can skip the second number if the small icon ID number is one
greater than that of the large icon:

<Icon 1000>Image

The text after the close-angle-quote is the description string that would normally be
used. It isn’t currently exposed in the File Browser UI, but it could easily be exposed
later on, so be sure to include a description.

The size of the large and small icons should match the dimensions of the large and
small application icons in the Applications View: 22 x 22 pixels and 15 x 9 pixels.
These dimensions are expressed in normal density; the double-density dimensions
are 44 x 44 and 30 x 18. The absolute maximum dimensions supported by the File
Browser and Favorites applications are 32 x 22 and 16 x 11—64 x 44 and 32 x 22 in
double-density. As always, be sure to include a normal-density bitmap as the first
element in each bitmap family.

When the File Browser wants to open a file, it does so through the Exchange
Manager. Applications typically receive sysAppLaunchCmdExgReceiveData to
open files. The application won’t receive a sysAppLaunchCmdExgAskUser sublaunch
but will receive a sysAppLaunchCmdExgReceiveData sublaunch, just as it would for
incoming beams.

Applications should check the name field in the socket to see if it is a “file:” URL. If so,
the application should set the goToCreator field in the socket to its own creator ID.
It can then proceed as if a beam was received, but it shouldn’t create a new record.
Instead, it should store the parsed data somewhere temporarily and set the
goToParams struct in the socket to refer to this temporary area.

Alternatively, once you know you’re handling a “file:” URL, you can have your
application stop using the Exchange Manager. Have your application put the URL into
a feature pointer and set the goToCreator. Then, when the application receives the
sysAppLaunchCmdGoTo launch command, you can have the application look for this

Chapter 10 System Extensions

128 Palm Developer Guide, Palm OS Platform, Rev. J

feature pointer. If the feature pointer is found, you can have the application parse
the URL to get a volRefNum and path. Then you can have the application proceed as
described earlier for kSysAppLaunchCmdOpenFile. This is the approach used in the
sample application. The code to parse the “file:” URLs is included in the File Browser
API library. The sample application available in the Palm OS SDK includes wrappers
around this entry point to make the code easier to use.

The wrapper function is as follows:

static Char *ParseFileURL (const Char *url, UInt16 *volRefNumP)
{

Char *path = NULL;
UInt16 refNum;
Err err;

err = SysLibFind(kFileBrowserLibName, &refNum);
ErrFatalDisplayIf(err, "Can't find file browser lib");
err = FileBrowserLibOpen(refNum);
ErrFatalDisplayIf(err, "Can't open file browser lib");
FileBrowserLibParseFileURL(refNum, url, volRefNumP, &path);
FileBrowserLibClose(refNum);
return path;

The entry point used in this wrapper function is:

Err FileBrowserLibParseFileURL(UInt16 refNum, const Char *urlP,
UInt16 *volRefNumP, Char **filePathP);

It takes a “file:” URL as input and outputs a volRefNum and path. It also allocates the
path. The caller is responsible for freeing it. If the URL can’t be parsed for any reason,
it passes back vfsInvalidVolRef for the volRefNum and NULL for the path.

A fileType parameter is included in the Open and Save As dialog box APIs. Pass NULL
for the fileType parameter to go to the root directory when switching volumes. The
initial folder is the root directory unless you specify a root folder. To specify an initial
file name, you must use a full path.

Pass an extension with the initial period or a MIME type to use the registered default
directory for the specified file type. The default directory is used when switching
volumes and when no initial directory is specified in the initial path.

For example, you could invoke the Save As dialog box with “.jpg” or “image/jpgeg”
as the fileType, “MonaLisa.jpg” as the initial path, and the volRefNum for the SD
card. The initial directory would then be /DCIM, and the file name would be pre-
populated with MonaLisa.jpg. When the user presses the internal drive button, the
/Photos and Videos directory of the internal drive is displayed. When the user presses
the internal drive button again, the root directory is displayed.

By registering with the Exchange Manager and handling
sysAppLaunchCmdExgReceiveData, an application can ensure that its files appear with
the correct icon in Files, and that selecting these files opens them in the application.
This is the most important aspect of the File Browser API, but there is another side to
it as well. Applications can use the File Browser library to display an Open or Save As
dialog box. This is most appropriate for applications that attempt to mimic their
desktop counterparts. These dialog boxes should not be used for other applications.

The File Browser library’s entry points are declared in FileBrowserLib68K.h.
To display the Open and Save As dialog boxes, only four of these entry points are
required: FileBrowserLibOpen, FileBrowserLibClose,

File Browser API

 Palm Developer Guide, Palm OS Platform, Rev. J 129

FileBrowserLibShowOpenDialog, and FileBrowserLibShowSaveAsDialog.
Some constants defined in FileBrowserLibCommon.h are also needed.

For example, to display an Open dialog box:

UInt16 refNum;
UInt16 volRefNum;
Char *path = MemPtrNew (kFileBrowserLibPathBufferSize);
const UInt16 numExtensions = 1;
const Char *extensions[numExtensions] = {"txt"};
Err err;

ErrFatalDisplayIf (path == NULL, "Can't alloc path");

// Find the library and call the Open function. There is no need
// to load the library.
err = SysLibFind (kFileBrowserLibName, &refNum);
ErrFatalDisplayIf (err, "Can't find file browser lib");
err = FileBrowserLibOpen (refNum);
ErrFatalDisplayIf (err, "Can't open file browser lib");

// If you want to start with a particular volume, set volRefNum
// to that volume. Otherwise, use vfsInvalidVolRef.
volRefNum = vfsInvalidVolRef;

// If you want to start in a particular directory, set path to
// that directory. Otherwise, use an empty string. You can include
// a filename as well as a directory if you want a file to be
// selected initially. You can specify a filename with no path, but
// only if you specify a fileType.
path[0] = chrNull;

// Display the Open dialog box. Returns whether a file was selected.
if (FileBrowserLibShowOpenDialog (refNum, &volRefNum, path,

numExtensions , extensions, // filter to show only these files
"text/plain", // use default folder for this fileType
"Select Item", // title for the dialog
kFileBrowserLibFlagNoFolders)) // pick a file, not a folder

{
// Do something with volRefNum and path.

}

// Clean up. There is no need to remove the library.
MemPtrFree (path);
FileBrowserLibClose (refNum);

The File Browser library is pre-loaded when the device is reset, so you just need to
find it and call the FileBrowserLibOpen and FileBrowserLibClose entry points.
You don’t need to call SysLibLoad or SysLibRemove.

The volRefNum and path are used both as input and as output. For input, you can
do the following:

■ Not specify a volume or a path (vfsInvalidVolRef and "")
■ Specify a volume only
■ Specify a volume and a directory but no file name
■ Specify a volume, a directory, and a file name

Chapter 10 System Extensions

130 Palm Developer Guide, Palm OS Platform, Rev. J

■ Specify a volume and a file name but no directory
■ Specify a file name but no volume or directory

The last two options require that a fileType be specified as well. If the user selects
a file or folder and selects OK, the volume and path of the selected file or folder is
passed back in the volRefNum and path parameters and the function returns true.
Otherwise, the parameters are left as they are and false is returned.

If a list of extensions is passed in, only files with one of the specified extensions are
listed, along with all the folders. Use 0 for numExtensions and NULL for extensions
to disable filtering.

You can specify a MIME type or an extension for the fileType. Be sure to include
a period before the extension: .txt. If a fileType is specified, the Open dialog
box automatically navigates to the default directory for the specified fileType when
the user switches volumes. The default directory for a fileType can be set using
VFSRegisterDefaultDirectory. It can be different for different media types—for
example, SD/MMC as opposed to the internal drive. If the initial path doesn’t include
a directory and a fileType is specified, the default directory for the specified
fileType is used. A fileType should be specified whenever possible; it makes
it faster for the user to navigate to the appropriate directory. If you use NULL for
the fileType, the user is taken to the root directory when switching volumes.

The title of the Open dialog box depends upon flag settings specified by the client
application. If NULL is passed in for the title, the Open dialog box is given the default
title specified by the flag settings in the client application.

You can use various combinations of the following flags defined in
FileBrowserLibCommon.h:

■ kFileBrowserLibFlagOneVolume—no volume picker

■ kFileBrowserLibFlagNoFiles—no files, only folders

■ kFileBrowserLibFlagNoFolders—no folders, only files

These flags should be logically combined. For example:
kFileBrowserLibFlagOneVolume | kFileBrowserLibFlagNoFiles. Use zero to
specify no flags. If you use kFileBrowserLibFlagOneVolume, be sure to specify a
volume because the user won’t be allowed to switch to any other volume. If you use
kFileBrowserLibFlagNoFiles, the user is only allowed to pick a folder. Files won’t be
shown at all. If you use kFileBrowserLibFlagNoFolders, the user is only allowed to
pick a file but can still navigate into folders to find a file. If you don’t use either of
these flags, the user is allowed to pick a file or a folder.

FileBrowserLibShowSaveAsDialog is very similar to FileBrowserLibShowOpenDialog.
In addition to allowing the user to navigate to any directory, it includes a field where
the user can enter a file name. If the specified path includes a file name, it appears in
this field. An additional parameter for the default extension, if specified, is appended
to the file name when the user does not enter an extension. Use NULL for the default
extension to use the file name exactly as it is entered.

The flags used for the Save As dialog box are as follows:

■ kFileBrowserLibFlagOneVolume—no volume picker

■ kFileBrowserLibFlagPromptOverwrite—warn before replacing

■ kFileBrowserLibFlagRequireExtension—only given extensions

■ kFileBrowserLibFlagNoNewFolder—no New Folder button

File Browser API

 Palm Developer Guide, Palm OS Platform, Rev. J 131

The first flag is used in the same way as it is for the Open dialog box.
Use kFileBrowserLibFlagPromptOverwrite if you want to warn the user
when a file name of an existing file in the selected directory is selected. This is
preferable to checking for duplicate file names afterward because it allows the
user to edit the file name or choose a different directory. Use
kFileBrowserLibFlagRequireExtension if you want to force the user to
use a specific extension or one of several extensions. Pass in the list of legal
extensions in the numExtensions and extensions arguments. Use the
kFileBrowserLibFlagNoNewFolder flag if you want to prevent the user
from creating new folders. This hides the New Folder button.

The FileBrowserLibShowSaveAsDialog function doesn’t actually save anything.
It just prompts the user for where to save the file and what to call it. It’s up to you
to do the following:

■ Create the file, truncating the existing file, if any.

■ Write to the file.

■ Close the file.

Similarly, FileBrowserLibShowOpenDialog doesn’t open the file or folder selected
by the user. It’s up to you to do the following:

■ Open the file or folder.

■ For folders, enumerate the contents.

■ Close the file or folder.

Chapter 10 System Extensions

132 Palm Developer Guide, Palm OS Platform, Rev. J

10.3 Smart Text Engine (STE) API
Available on:
■ Centro™ and Treo™ smartphones

■ LifeDrive™ mobile manager

The Smart Text Engine (STE) shared library enables applications to implement
rich text display and processing. The STE is designed to allow any application to
automatically identify, render, and link web URLs, email addresses, and phone
numbers to appropriate applications. For example, selecting a phone number in
SMS dials the number, or selecting a URL in an email launches that URL in the web
browser. The STE library offers a high level of convenience for end users as
it seamlessly links information and communication applications.

The STE library performs three basic functions: parsing, rendering, and displaying.
Applications supply the STE with a text stream object and specify the area on the
screen to render. This area can include a scroll bar that is used to scroll the contents
of a multi-page display. The STE passes the text through its three layers to create,
display, and activate links.

The STE library solves the traditional Palm OS software limitations of the text field:
black- and-white display with one font style. Using the STE library, applications can
mix bold and standard fonts, mix colors, add graphics, and even add emoticons.

In addition to the information provided here, you can also refer to the STETest.zip
sample code file in the Palm OS SDK for information on how to use this library.

Refer to the Palm API Guide, Palm OS Platform for detailed information about each
of the STE APIs.

Smart Text Engine (STE) API

 Palm Developer Guide, Palm OS Platform, Rev. J 133

10.3.1 STE architecture
The STE includes several components—the parsing engine, the rendering engine,
the display engine, event handling, and text selection. This modular design allows
new components to be added easily. For example, if an HTML parser is needed, it can
be added to the STE library without major architectural modifications. The following
figure shows the architecture of the STE.

10.3.1.1 STE parsing engine
The parsing engine is responsible for finding the URLs, email addresses, and phone
numbers within text. It also detects emoticons and special Smart Text delimiters or
tags that affect the text format display. This allows applications to quickly detect
whether the text has STE delimiters.

Scanning for URLs, email addresses, and phone numbers requires complex
processing in the STE library. A specific algorithm is used to check the validity of
characters in URL and email addresses text strings. Checking phone numbers is more
complex because it involves appending multiple numbers separated by spaces to
compile the final phone number. A basic matching algorithm is used to find
emoticons with one special condition: all smileys must have either a colon (:) or
semicolon (;) for the eyes.

Smart Text delimiters are identified by the characters “//STE” followed by additional
characters that define the exact properties of the delimiter.

Applications

Parsing Engine

Rendering
Engine

Display Engine

SCREEN

Initialization

Buffer

Raw text stream
(32KB max)

Text + list of
parsed “words”

Realigned text

Rich
formatted text

Highlight, hot rect,
scroll bar controls

STE

Chapter 10 System Extensions

134 Palm Developer Guide, Palm OS Platform, Rev. J

The parsing engine works by separating the string into separate words—groups of
characters separated by a space character. Each of the words is pre-scanned to check
whether it is a potential URL, email address, phone number, or emoticon type. If the
word qualifies as any of these types, it is then further scanned to see if it matches the
requirements for that type. Phone number checks require scanning for consecutive
groups of words to form the final complete phone number.

The result of the parsing engine is a list of parsed items. This list is then used by
the rendering engine to format and display the rich text.

10.3.1.2 STE rendering engine
The rendering engine takes the text input, along with the parsed info list, and
determines exactly where the text belongs in the list. If there is no formatting
involved, this is very much like displaying text in a text field. When special objects
and formatting are added to text, the rendering process becomes more complex.

The basic algorithm goes through the text string and determines whether the next
word can fit on the current line in the display. All the STE text string display properties
are considered when determining fit. The font can be bold, normal, or colored. There
can be emoticons and other bitmaps displayed, as well. The different widths of the
text and graphics in different display modes are also considered when calculating fit.
The engine keeps track of the actual text that is displayed on each line to process text
selection and manipulation.

After all the text has been parsed and rendered, it can be displayed.

10.3.1.3 STE display engine
The display engine takes the data structures created by the rendering engine and
displays the correct data at the correct location in the list. The display engine also
controls text highlighting and scroll bar positioning.

REM Sleep API

 Palm Developer Guide, Palm OS Platform, Rev. J 135

10.4 REM Sleep API
Available on:
■ Centro™ and Treo™ smartphones

■ Palm® Tungsten T|X handheld

The REM Sleep API allows applications on a smartphone to run while the display is
off and the keyboard and digitizer are disabled. The REM Sleep API is on Palm
smartphones and T|X handhelds, but not on prior Tungsten™ or Zire™ handhelds.

REM sleep is especially useful for applications that constantly run in the foreground,
but also want to conserve the battery, such as MP3 players, etc.

REM sleep mode is initiated at the point when the smartphone would otherwise go
into deep sleep mode. You should already be familiar with the sleep-deferral and
notification mechanisms in the Palm OS before using the REM Sleep API. For more
information on notifications, refer to the “Notifications” section, in particular the
“Sleep and Wake Notifications,” in the Palm OS Programmer's Companion, vol. I.

The smartphone may be put to sleep for two reasons: The user presses the power
button or another button that functions as a power button, or the smartphone
remains idle for the duration set as the auto-off timeout value.

For an example of how to use the REM Sleep API, refer to _REMTimer in the Sample
Code section of the SDK.

10.4.1 Normal sleep deferral
The process of a smartphone going to sleep begins with a virtual key event. In the
case of a user pressing the power button, a vchrHardPower event occurs. In the case
of the auto-off timeout value being reached, a vchrAutoOff event occurs.

When the initiating event is processed by SysHandleEvent, a sleep-request
notification is broadcast to all registered recipient applications. If any recipient sets
the deferSleep member of the notification parameter block, the system does not go
to sleep and the smartphone continues to run.

When sleep is deferred, the application or library responsible should enqueue
vchrResumeSleep after it has finished doing whatever caused it to defer the sleep. The
event vchrResumeSleep works similarly to vchrHardPower and vchrAutoOff in that it
causes the sleep-request notification to be broadcast. Another application may then
set the deferSleep member, causing the defer process to continue.

If the sleep request is not deferred, the system enqueues a virtual key event with the
vchrPowerOff character. When the vchrPowerOff event enters SysHandleEvent,
a sleep notification is broadcast to inform its recipients that the system is going to
sleep, and the system is immediately put to sleep thereafter.

The sysNotifySleepRequestEvent and sysNotifySleepNotifyEvent APIs are
part of the Garnet OS header file NotifyMgr.h. For more information and
documentation, refer to the ACCESS Developer Network at the following URL:

http://www.access-company.com/developers/index.html

Chapter 10 System Extensions

136 Palm Developer Guide, Palm OS Platform, Rev. J

These APIs work as described:

■ sysNotifySleepRequestEvent - A sleep request event is broadcast to indicate
that a device is about to go to sleep, and provides an opportunity for applications
to perform an action or even delay going to sleep. This event may be broadcast
multiple times if one or more clients defer sleep.

■ sysNotifySleepNotifyEvent - A sleep notify event is broadcast to indicate that
a device is going to sleep immediately after the broadcast is finished.

10.4.2 REM sleep mode
REM sleep mode occurs in the time between when the sleep-request notification
occurs and when the sleep notification occurs. If the sleep-request notification is not
deferred, the display is turned off and then a REM request notification is broadcast
(hsNotifyRemSleepRequestEvent). The REM sleep-request notification has the exact
same parameter block as the sleep-request notification. A recipient of the notification
that needs REM sleep simply sets the deferSleep member in the parameter block. If
the deferSleep parameter is set in the REM sleep-request notification, the system
broadcasts a REM notification to inform recipients that REM sleep has been entered.

The expectation is that whatever is happening during REM sleep is a transient
condition that will in most cases lead to deep sleep shortly thereafter. To
accommodate this expectation, the REM-request notification is periodically resent
until it is not deferred. The current implementation resets the auto-off timer to expire
a few seconds after entering REM sleep so that the whole REM-request notification
process repeats periodically. You should not rely on this particular implementation,
but instead defer the REM request as often as it comes.

For more information, refer to the sleep mode flowchart in Section 10.4.4.

IMPORTANT: An application has to register for REM sleep notification
(hsNotifyRemSleepRequestEvent) and normal sleep (sysNotifySleeprequestEvent)
notification when initializing the application in order to support any kind of sleep
deferral.

The hsNotifyRemSleepRequestEvent and hsNotifyRemSleepEvent APIs are
defined in the header file Incs/common/system/HsCreators.h, which is part of the
Palm OS SDK. For complete reference information, refer to the document Palm API
Guide, Palm OS Platform.

These APIs work as described:

■ hsNotifyRemSleepRequestEvent - This notification is sent after
sysNotifySleepRequestEvent to determine whether an application needs to
continue processing while the screen is turned off. The details parameter is
SleepEventParamType in which deferSleep should be incremented if REM
sleep is required.

■ hsNotifyRemSleepEvent - This notification is sent to indicate that REM sleep is
starting, due to hsNotifyRemSleepRequestEvent being deferred. At this point,
the screen is turned off and the autooff timer is primed to expire. This causes the
cycle to restart with sysNotifySleepRequestEvent and
hsNotifyRemSleepRequestEvent both being resent.

REM Sleep API

 Palm Developer Guide, Palm OS Platform, Rev. J 137

10.4.3 Detecting REM sleep mode
If you need to determine whether the smartphone is already in REM sleep while
handling a REM-request notification, register for the sleep-request notification, as
described in Section 10.4.2,and use HsAttrGet() to obtain the value of
hsAttrDisplayOn. By the time the REM request is broadcast, the display is already
turned off and non-power/application keys are disabled. The sleep reason in the REM
request simply reflects whatever the sleep reason was from the preceding sleep
request.

10.4.4 LCD on/off notification

Available on:
■ Centro™ smartphones

■ Treo™ 680, 700p and 755p smartphones

This notification lets an application know when the LCD screen has been turned on
or off. To register for this notification, use:

SysNotifyRegister(myAppCardNo, myAppDbID, kPalmCreatorIDLcdState, 0,
sysNotifyNormalPriority, 0);

When receiving a notification, use the following code (in PilotMain) to check for the
LCD on/off notification:

-
 case sysAppLaunchCmdNotify:

 pNotify = (SysNotifyParamType *) cmdPBP;

 switch (pNotify->notifyType)
 {
 case kPalmCreatorIDLcdState:
 if (pNotify->notifyDetailsP == 0)
 {
 // LCD is off
 }
 else
 {
 // LCD is on
 }
 break;
 }

The notification is located in the palmOneCreators.h header file, and can also be
found in the Palm API Guide, Palm OS Platform.

Because the display information is sent as a notification, when an application
receives this notification, the display state may have already changed. For this
reason, if an application is interested in the current state of the display, it may be
useful for the application to poll the display state. See Section 10.4.3 for information
on using HsAttrGet() to obtain the value of hsAttrDisplayOn.

Chapter 10 System Extensions

138 Palm Developer Guide, Palm OS Platform, Rev. J

The following figure shows the sleep mode flowchart of events.

Normal waking operation

SysHandleEvent handles one of these:
vchrHardPower, vchrAutoOff, vchrResumeSleep

Auto-off timer is reset

sysNotifySleepRequestEvent is broadcasted

Increment
deferSleep Should the device sleep?

Display is turned off and non-power/app keys
are disabled *

hsNotifyRemSleepRequestEvent is broadcasted

Remain in REM Sleep?

sysNotifySleepNotifyEvent is broadcasted

User presses power/app key

sysNotifyEarlyWakeupEvent and
sysNotifyLateWakeupEvent are broadcasted

sysHandleEvent handles key with
powerOnKeyMask

EvtResetAutoOffTime() resets the auto-off timer
and turns on display

SysHandleEvent re-enables the keyboard on the
next event

Yes

No

No }Normal
Sleep

Deferral

{REM
Sleep

Deferral

* The keys and display could
already be in their sleeping

state if the device is already in
REM sleep

Increment deferSleep

Auto-off timer set to expire in
a few seconds

hsNotifyRemSleepEvent
broadcasted

Auto-off timer expires

Performed by
System or User

Performed by
application to
support sleep

deferral

Key

Yes

Keyguard API

 Palm Developer Guide, Palm OS Platform, Rev. J 139

10.4.5 Waking up from REM sleep mode
While the system is running in REM sleep mode, it may be necessary to “wake up”
and turn the display on, which you can accomplish by calling EvtResetAutoOffTimer.

When displaying any UI that must be seen by the user immediately, you should call
EvtResetAutoOffTimer to ensure that the display is on. However, it’s likely that a user
won’t even pay attention to their smartphone that is in REM sleep mode. If the user
must be notified, consider using the Attention Manager instead.

In order to maintain the expected user experience, while in REM sleep mode the
keyboard and touch screen are set to behave as if the smartphone is sleeping. That
is, the touch screen is disabled and only those keys that would normally wake the
smartphone are active. If one of the keys that would normally wake the smartphone
is pressed, it generates a key event with the poweredOnKeyMask modifier bit set. When
EvtGetEvent sees a key event with this bit set, it turns the display back on by calling
EvtResetAutoOffTimer.

A version of REM sleep has been included in the Palm OS software since version 3.5.
After waking up from deep sleep, the auto-off timeout has effectively already expired.
If the event queue is emptied without the auto-timer ever being reset, a vchrAutoOff
event is immediately returned from EvtGetEvent, causing SysHandleEvent to initiate
putting the smartphone back to sleep right away. This behavior has not been
changed, but has been accounted for in the REM Sleep API. There will not be a
barrage of auto-off events if REM sleep is entered from deep sleep without the
display ever being turned on. (This happens during mail sync in certain applications,
for example.)

10.5 Keyguard API
Available on:
■ Centro™ and Treo™ smartphones

The keyguard API prevents a smartphone from being turned on by accident.
Sometimes when a smartphone is in a user’s pocket or purse, the power button
or other key is pressed inadvertently. Applications can set or query the state of the
Keyguard feature on the smartphone.

When the Keyguard is active, the digitizer is locked and EvtGetEvent will not return
any key events that came from the keyboard. Other key events not generated by the
keyboard are returned.

To programmatically enable or disable the Keyguard, use HsAttrSet() to set the
value of hsAttrKeyboardLocked to true. Do not send an hsChrKeyboardLock key
event to enable the Keyguard.

To query whether the Keyguard is active, use HsAttrGet() to get the value of
hsAttrKeyboardLocked.

NOTE: hsAttrKeyboardLocked does not always indicate that the Keyguard dialog
box is being displayed. There are states in Keyguard in which key and pen events are
filtered and the Keyguard dialog box is not displayed.

To prevent the Keyguard from being enabled, block the virtual character
hsChrKeyboardLock from being handled by SysHandleEvent. In an active application,

Chapter 10 System Extensions

140 Palm Developer Guide, Palm OS Platform, Rev. J

check for hsChrKeyboardLock between EvtGetEvent and SysHandleEvent. In an
application running in the background, register for
sysNotifyVirtualCharHandlingEvent notification and mark the notification handled
when a virtual character comes through. Blocking hsChrKeyboardLock is all that is
required. Even if the Keyguard is already enabled, such as through auto-keyguard,
the Keyguard is disabled when hsChrKeyboardLock is blocked.

Setting the value of hsAttrKeyboardLocked to true does not immediately enable the
Keyguard. Instead, an internal state is set and hsChrKeyboardLock is enqueued. Only
when hsChrKeyboardLock reaches SysHandleEvent is the Keyguard enabled. At that
time, the Keyguard dialog box is displayed, taking control from the active application.

When auto-keyguard is on, the Keyguard is enabled after waking up from REM or
deep sleep until either the dialog box is displayed or it is determined that the
Keyguard doesn’t need to be enabled because the smartphone wasn’t asleep long
enough. This prevents extra keystrokes from being lost while a smartphone wakes
up. If the value of hsAttrKeyboardLocked is set to false or hsChrKeyboardLock is
blocked while the auto-keyguard process is occurring, the Keyguard is disabled
before the dialog box is displayed.

10.6 Option and Shift key APIs
Available on:
■ Centro™ and Treo™ smartphones

The Option and Shift keys increase the range of input possibilities on Palm
smartphones. For example, a map application, which uses a 5-way Up key press
to scroll up, can use an Option+5-way Up key press to zoom in.

There are APIs available to detect whether Caps Lock or Option Lock is on. An
application can also detect if the Option key or the Shift key has been pressed.

There are also APIs available to set Caps Lock or Option Lock and to
programmatically simulate Option or Shift key presses.

Also, if an application includes a Graffiti Shift Indicator (GSI) UI object in the
application's resource, then Option and Shift key presses can be visually detected.

MMS helper functions API

 Palm Developer Guide, Palm OS Platform, Rev. J 141

10.7 MMS helper functions API
Available on:
■ Centro™ and Treo™ smartphones

The MMS helper function APIs are only available on Treo and Centro smartphones.
The MMS (Multimedia Messaging Service) application is the built-in application that
provides an interface for other applications to send and receive MMS messages. You
can interface with the MMS application through the Helper API.

The MMSHelperCommon.h header file is a public 68k header file that is used with the
Default Helper Library. This file contains the type and structure parameters for the
MMS Helper Service Class. To handle MMS, register to this service using the Default
Helper library.

You can also refer to the MMSReceiver and MMSSender sample codes in the Palm
OS SDK to learn how to use this library.

10.7.1 MMS usage model
This section explains how to use the MMS Helper structures with the Palm OS Helper
APIs to submit an MMS send request to the MMS application.

The built-in MMS application is registered in the system as a Helper service class
for the MMS service type. When the system receives MMS Helper requests
submitted by applications, the system broadcasts a notification to the MMS
application to accept and receive the MMS helper data structure from the requesting
application.

This gives audio and imaging applications an easy and convenient method for
sending picture or audio files using a phone without having to implement the Phone
API interface code. The application needs to know only the phone number or email
address of the recipient in order to send MMS data to the recipient.

NOTE: Currently, only the built-in MMS application is registered as an MMS Helper
service provider. In the future, there may be multiple applications registered as MMS
Helper service providers. Be as specific as possible when designing an application
request for an MMS Helper service.

A Helper requesting application can specifically request which Helper service
provider to invoke by specifying the exact creator ID of that Helper service provider
in the helperAppID field of the HelperNotifyExecuteType structure. Setting
helperAppID to 0 indicates all Helper service providers.

Chapter 10 System Extensions

142 Palm Developer Guide, Palm OS Platform, Rev. J

The following figure shows the MMS helper usage model.

10.7.2 MMS sample code
The following sample code shows how an application submits an MMS send request
to an MMS service provider. The implementation first populates the
HelperServiceMMSDetailsType and HelperServiceMMSObjectType structures with
the data, address, and message information. It then attaches the detail structure into
a HelperNotifyExecuteType so that it can be submitted to the system and be
broadcast to all the service providers.

HelperServiceMMSObjectType is the structure that holds the MMS object. This
structure is part of the linked list which is pointed by the object member of
HelperServiceMMSDetailsType.

HelperServiceMMSDetailsType is the structure that helpers of this service class
use to send an MMS message

{
...

case MMSSendButton:
{
BitmapPtr bitmapP = NULL;

HelperServiceMMSDetailsType MMSDetails;
HelperServiceMMSObjectTypeobject;

MemSet(&MMSDetails, sizeof(HelperServiceMMSDetailsType),0);
MemSet(&object,sizeof(HelperServiceMMSObjectType),0);

bitmapP = MemHandleLock (gLockBitmapH);

object.pageNum = 1;
object.tempFileName = NULL;
object.mimeType = "application/vnd.palm.bmp";
object.bufferP = bitmapP;
object.bufferLen = MemPtrSize(bitmapP);

MMSDetails.object = &object;
MMSDetails.version = 1;
MMSDetails.justSend=false;

System

MMS

Third Party

Imaging Map

Messaging

Application
Broadcast MMS
Request

Submit
MMS
Request

Send MMS
Data

Register as MMS
Service Provider

MMS helper functions API

 Palm Developer Guide, Palm OS Platform, Rev. J 143

MMSDetails.cc = "a cc address";
MMSDetails.subject = "subject text";
MMSDetails.message = "message text";

err = PrvInvokeHelperService(kHelperServiceClassIDMMS,
“recipient_address@palm.com”, "Helper Sender", &MMSDetails);

MemHandleUnlock(gLockBitmapH);

PrvInvokeHelperService in the previous code snippet is implemented to invoke
the helper service, as shown:

HelperNotifyExecuteType execute;

event.actionCode = kHelperNotifyActionCodeExecute;
event.data.executeP = &execute;

PrvBroadcastHelperAction(&event);

The MMS service that receives the notification then executes the
helperNotifyActionCodeExecute request if it is intended for this helper.

HelperNotifyEventType* helperParamP;

HelperNotifyExecuteType* executeP;

if (helperParamP->actionCode == kHelperNotifyActionCodeExecute)

{

// If this is a request for MMS service and it either targets
// this specific helper via its helperID or wildcard (0), then
// handle it.

if ((executeP->serviceClassID == kHelperServiceClassIDMMS)

&&
((executeP->helperAppID == prvMyHelperID) || (executeP->helperAppID == 0)))

{

/* further processing */

}

.

.

.
}

Chapter 10 System Extensions

144 Palm Developer Guide, Palm OS Platform, Rev. J

10.8 NVFS
Available on:
■ Centro™ and Treo™ smartphones

■ LifeDrive™ mobile manager

■ Tungsten™ T5, Tungsten™ E2, and Palm® T|X handhelds

■ Palm® Z22 organizer

NVFS stands for Non-Volatile File System. Storage in Palm devices traditionally
included nonvolatile NOR flash where the Palm OS and built-in applications were
stored, and a volatile SDRAM (synchronous dynamic random access memory) where
the Dynamic and Storage heaps were stored. If the power was removed, all data in
the RAM was deleted.

Treo 650, Treo 680, Treo 700p, Treo 755p, and Centro smartphones, LifeDrive, Palm
T|X and Tungsten T5 and E2 handhelds have NAND flash memory, which is
nonvolatile. NAND flash houses the storage heap and other data so that it is not
erased even if the power is drained from the device. Unlike other devices, Treo 700p
and Treo 755p smartphones include both NOR and NAND flash memory.

The main difference between NOR and NAND flash memory is that NOR flash is
completely XIP (execute in place), and all addresses in NOR flash are mapped using
address pins so that each byte can be accessed. In NAND flash memory, data is
accessed in blocks, and only a small section. The section that houses the boot
code is XIP.

This means that code instructions cannot be executed out of NAND memory
directly, and thus require the system image (rom), as well as any other application,
to be executed from DRAM. For more information on NOR and NAND flash memory,
see Section 10.8.1.

The following figure displays the NVFS memory map for the devices mentioned at
the beginning of this section.

NAND Flash DRAM

System Im age Token

SPL/TPL

Sam ple content , overflow program s

Compressed ROM
(if applicable)

User Data
(Accessessible only by
using a Special flag

File Volume
(Tungsten T5 and
LifeDrive only)

Bad Block Reserve

Storage
Heap

Uncom pressed
executable

System Image
(if applicable)

DB cache

Dynamic Heap + M isc.

*Diagram is not to scale .

(Treo 700p and Treo 755 only)

NOR Flash

Palm 700p System
Image

NVFS

 Palm Developer Guide, Palm OS Platform, Rev. J 145

For devices where the system image resides in NAND flash memory, copying and
uncompressing the system image to DRAM for execution occurs at early boot time.
Other applications residing in the Storage Heap are copied upon launch from NAND
to DRAM for execution. Both code and data is copied to/from the NAND Storage Heap
into the portion of RAM used as a cache, called DBCache. DRAM must also contain
another area for an application's local data; this area is called the Dynamic Heap.

Devices where the system image resides in NOR flash memory (Treo 700p and Treo
755p smartphones only) do not go through the copying and uncompressing process.

Because DRAM is of a fixed size, and because it must contain the system image,
DBCache, and Dynamic Heap, the size of the uncompressed system image directly
affects the amount of DRAM memory available for the DBCache and Dynamic Heap.
Since it is desirable to have the DBCache and Dynamic Heap be as large as possible,
there is a mechanism that does just that, by reducing the size of the system image.

This is accomplished by having a separate area of NAND which contains compressed
versions of applications, libraries, default content, and language overlays. This
area is called Overflow. This Overflow area is flashed into the NAND during
manufacturing, or a system image update, and not changed dynamically. Its size, and
content, is set exclusively by Palm.

The Treo 700p and Treo 755p smartphones do not contain a NAND Overflow because
it has NOR memory. They contain 64MB NAND, most of which (61.8MB) is available
to the user for storage.

At a hard reset, the system finds NAND Overflow and uncompresses the content
from this area, and then saves it in the Storage Heap (which resides on NAND). This
decreases the amount of Storage Heap space remaining available (by requiring that
uncompressed versions of this data reside in the Storage Heap), but frees up an
equivalent amount of memory in the system image, since these applications,
libraries, and language overlays would otherwise be part of the system image. This
mechanism thus allows more space for the Dynamic Heap and the DBCache on the
fixed-size DRAM.

When an application is launched, records and resources are copied from flash, as
required, into DBCache. In addition, when a database is opened by an application,
it is copied from flash into DBCache and is accessed directly from DBCache. All
application access to its databases goes directly to DBCache only; it does not know
that there is flash storage behind it. Because the cache is write-back, writes to
DBCache do not immediately propagate back to flash. Instead the OS writes back
those changes at the following occurrences: the database is closed, the system goes
to sleep (auto off or user powers the device off), a call is made to DmSetDatabaseInfo,
or a call is made to the NVFS API (DmSyncDatabase). At these times, the database is
scanned for “dirty” records, and those records are written back to flash.

When the system goes to sleep, it makes sure that database changes are committed
to flash memory. The system commits changes to NAND flash when it receives a
sleep notification and does this at a normal priority. Applications that make database
changes in response to sleep notifications should do so at a higher priority so the
system can commit the changes. The system also commits changes back to flash
memory when the database is closed and when DmSetDatabaseInfo() or
DmSyncDatabase() is called.

Chapter 10 System Extensions

146 Palm Developer Guide, Palm OS Platform, Rev. J

The following diagrams illustrate how the RAM and NAND flash are partitioned. All memory sizes shown in the figures are
approximate values.

User Data or
Storage Heap

Internal
Volume

<Accessible>

<Accessible if
present>

NAND Flash
Part Positions Treo 650Tungsten T5

RAM Partitions Tungsten T5 Treo 650

Treo 700p/755p

Treo 700p/755p

RAM and NAND Flash Partitioning by Device

Treo 680

Treo 680 Centro

16MB

10MB

6MB

10MB

6MB

16MB 30MB

24MB

10MB

Not present

22MB

10MB

30MB

24MB

10MB

Decompressed
System Image

DB Cache Area

Dynamic Heap

64MB

178MB

24MB

Not present

64MB

Not present

61.8MB

Not present

64MB

Not present

Centro

Total Size =
32MB

Total Size =
32MB

Total Size =
64MB

Total Size =
32MB

Total Size =
64MB

NVFS

 Palm Developer Guide, Palm OS Platform, Rev. J 147

10.8.1 Differences between NOR and NAND flash memory
The NOR flash or masked ROM houses the system image (ROM) while RAM houses
the dynamic and storage heaps. The RAM contains the dynamic heap and a DBCache
area that acts as a temporary storage heap. The actual databases are stored in the
NAND flash memory as files and are brought into the DBCache area when opened.

For devices where the system image is compressed and stored in NAND flash, during
boot time the system image (ROM) is decompressed and brought into RAM storage.
Then the Palm OS software starts executing OS code from the RAM. The portion of
RAM that has the decompressed system image is read only so that users cannot
corrupt OS code (see the preceding figure). The RAM also contains the dynamic heap
as in the past. The compressed system image in NAND flash is not visible or
accessible to users or developers.

Devices where the system image resides in NOR flash memory, such as Treo 700p
and Treo 755p, do not go through the copying and uncompressing process.

Performing a soft reset wipes the RAM clean and retrieves a fresh load of the system
image from the NAND flash. A hard reset additionally erases the storage heap that is
in the NAND flash.

The NAND flash is formatted into multiple partitions. Compressed system image is
stored in one partition, User Store is stored in a second partition, and there can be an
optional third partition as shown in the preceding diagram. The Palm OS software
sees these partitions as nonremovable volumes accessible using VFSMgr calls. Data
in the flash is stored as FAT files. The volume that houses the storage heap is hidden
in all devices and can be accessed only by using a special private flag while
enumerating the volumes. This volume is known as the private volume. Some
devices include a partition that can be accessed similar to an SD slot. In Tungsten T5
handhelds, this partition is called INTERNAL. In the LifeDrive mobile manager, it is
called LIFEDRIVE. Users can rename this partition like any other volume. To find this
partition, look for the nonhidden, nonremovable volume.

The size of the resource database is limited to the size of the DBCache. For large
record databases, the OS intelligently purges or flushes data from the cache to free
space for new records: If the DBCache becomes full, the OS purges records that are
not locked in memory. If the records are modified, they are committed back to flash
memory. The purging of data takes place in the background and is seamless to the
user. You should be aware that there are some performance issues associated with
this method. There may be a noticeable time difference in performance compared to
earlier devices when a large amount of data is flushed back from the cache into the
NAND flash memory.

Chapter 10 System Extensions

148 Palm Developer Guide, Palm OS Platform, Rev. J

10.8.2 Database layout on NVFS devices
The figure below illustrates how the NVFS Database Management Solution works
on NVFS devices (with 512-byte blocks) for a database with three records. Also see
Section 10.8.2.1.

NVFS includes a mechanism for storing Palm OS databases in a FAT (file allocation
table) file system. In the NVFS device, the file system is applied to flash (non-volatile)
memory, also called the flash drive.

In this FAT file system, each file consists of multiples of 512-byte sectors. Each file is
allocated in multiples of four sectors (for FAT16). This means that each file occupies
multiples of 2K bytes in the file system. Each Palm OS database is stored in its own
file in the file system on the flash drive. Additional overhead in the FAT system for
tracking and managing the file system is independent of how the databases are laid
out within it.

The header of the database and the record list occupy one or more sectors.
RecordInfo entries that do not fit in the first sector become the extended record list
and are allocated to other sectors, as needed. The additional sectors do not need to
be contiguous.

For example, a database that contained 100 records would look something like this:

Sector 1

Database Header

RecordInfo 1

RecordInfo 2

RecordInfo 3

…

RecordInfo 39

Header (80 bytes)

Record 1 (100 bytes)

Record 2 (514 bytes)

Record 3 (2 bytes)

Header (80 bytes)

Record 1 (100 bytes)

Record 2 (514 bytes)

Record 3 (2 bytes)

FAT (512 bytes)

Record 2 (first part, 512
bytes)

On a non-NVFS device RAM (NVFS device with 512-byte
block)

Flash (NVFS device with 512-byte
block)

NVFS

Record 3 (512 bytes)

Record 1 (512 bytes)

Record 2 (second part, 512
bytes)

Directory (Header, 512
bytes)

Record 2 (first part, 512
bytes)

NVFS

 Palm Developer Guide, Palm OS Platform, Rev. J 149

The Database header includes the name, type, creatorID, and so on. The RecordInfo
is a fixed size and includes the recordID, attributes, and other system information but
does not include the actual record data, which is variable in length. Note that in this
example the third sector is only partially used, leaving some wasted space.

The record data is kept separately, and its layout in the file sectors depends on the
version of NVFS in use. Version 5.4.5 (included with the original Treo 650 smartphone
and Tungsten T5 handheld) stores the data for each record in one or more sectors.
For example, if the first record contained 60 bytes of data and the second record
contained 700 bytes of data, the database would look something like this:

In this example, the fourth and sixth sectors are partially used, leaving some space
wasted.

Sector 2

RecordInfo 40

RecordInfo 41

…

RecordInfo 85

Sector 3

RecordInfo 86

RecordInfo 87

…

RecordInfo 100

Sector 4

RecordData 1 (60 bytes)

Sector 5

RecordData 2 (first 512 bytes)

Sector 6

RecordData 2 (remaining 188
bytes)

Chapter 10 System Extensions

150 Palm Developer Guide, Palm OS Platform, Rev. J

10.8.2.1 Database layout
Palm OS 5.4.7 and later allows data from more than one record to share a sector.
Logically the sector is divided into 16 sub-blocks of 32 bytes each. Then the record
data is stored into a sector based on alignment of the data length with the available
sub-blocks of the sector.

The number of sub-blocks is determined by the length of the record data. The length
is rounded up to the nearest power of 2 to determine the number of sub-blocks. The
placement of the data in the sector depends on this number and an associated
alignment within the sector. For example, if the record data fits within a single sub-
block, it can be positioned at any of the 16 sub-block alignments in the sector. If the
record data requires two sub-blocks, then it can only be placed at the even-numbered
sub-blocks, that is, on 64-byte alignments. If four sub-blocks are required, it can only
be placed at 128-byte boundaries, and so on. As before, record data longer than 512
bytes will occupy as many complete sectors as required with the remaining bytes,
following the rules above.

Using the same example, the database would look something like this:

Note that in this example the fourth sector is partially used, leaving some space
wasted, but there is no sixth sector used at all. In addition, if a third record is added
that has less than 129 bytes of data, it can also be placed in Sector 4.

Generally, the layout with version 5.4.7 will have substantially less unused space for
record data storage compared to version 5.4.5.

As records are added, changed, and deleted in the database, holes of unused space
will develop in the file sectors. The NVFS system will monitor the total size of these
holes, and if it gets too large, the file will be compacted. Compactions will reorganize
the database records within the file sectors to fill in the holes and reduce the wasted
space.

Sector 4

RecordData 1 (60 bytes, occupying 64 bytes)

RecordData 2 (remaining 188 bytes, occupying 256 bytes)

Sector 5

RecordData 2 (first 512 bytes)

NVFS

 Palm Developer Guide, Palm OS Platform, Rev. J 151

10.8.3 Programming on devices that have NVFS
The changes in how NAND flash works, as opposed to NOR flash, require some
changes in how you program for NVFS devices. Although all applications should run
without much modification, some cases may require special handling, such as those
that deal with very large databases (over 5MB). Some of these cases are discussed in
this section.

10.8.3.1 Checking for NVFS
To check if a device includes NVFS, use the following command:

FtrGet (sysFtrCreator, sysFtrNumDmAutoBackup, &returnVal);

If the returnVal is 1, NVFS is present on the device. sysFtrNumDmAutoBackup is
defined in the PmPalmOSNVFS.h header file.

10.8.3.2 Database issues
One of the issues with the DBCache area is that if a device loses power (for example,
if the battery is removed from the Treo 650 smartphone) when a user is modifying a
database, all modifications are lost, because database changes are committed back
into the NAND flash only when the database is closed.

NOTE: There is no way to determine programmatically that the battery is about
to be removed.

To overcome this problem, you might want your applications to call the
DmSyncDatabase() API. This API ensures that database changes are committed
to NAND flash. (Note that the DmSyncDatabase() API has nothing to do with the
HotSync® feature.) DmSyncDatabase() takes a reference to the open database
that needs to be synchronized. To use DmSyncDatabase(), you need the
PmPalmOSNVFS.h header file from the Palm OS SDK.

Use the following guidelines for developing applications for NVFS devices:

■ If you call DmSyncDatabase or DmCloseDatabase, make sure to check for
returned errors and clean up appropriately.

■ Always check for errors from DataMgr calls that allocate memory, for example,
calls such as DmNewRecord and DmResizeRecord.

■ Be aware that the database cache guarantees that individual records are saved
atomically. That is, if the device runs out of space in the middle of writing out the
200th modified 1k record in your database, you should expect the first 199
changed records to be saved, but changes to the 200th record will be completely
lost rather than partially saved. If your application requires that the entire
database be saved atomically (for example, if your application creates another
application, or if modifications in one record depend on modifications in another
record), your application must be aware of these failure scenarios and guard
against them.

If there is space in DBCache while the storage heap is full, database creation and
modification may work, but DmCloseDatabase() may fail because the database data
cannot be committed to the storage heap.

Chapter 10 System Extensions

152 Palm Developer Guide, Palm OS Platform, Rev. J

To check the free bytes or size of DBCache, use MemHeapFreeBytes() and set the high
bit of the heap ID as follows:

#define STORAGE_HEAP_ID 1
MemHeapFreeBytes(STORAGE_HEAP_ID | dbCacheFlag, &free, &max);

The call MemHeapFreeBytes(STORAGE_HEAP_ID, &free, &max); returns the free
bytes in the storage in the NAND flash part of the memory (User Store).

To discover the total size of the DBCache area or User Store, you can use the Palm OS
API MemHeapSize() with the same values for the STORAGE_HEAP_ID described
previously.

Applications that work with resource databases larger than the size of the DBCache
area cannot directly access files used to represent the databases on the internal
volume, due to a special file format not readable by the application or application
developer. As described in the next section, you can split the data in databases to
span multiple databases, or access the file system to read and write to files instead
of using databases.

10.8.3.3 Accessing the internal file or private volumes in NVFS
The volume housing the storage heap can be accessed using the
VFSVolumeEnumerate() function as follows:

#define vfsIteratorStart 0L
#define vfsIteratorStop 0xffffffffL

UInt32 volIterator = vfsIteratorStart | vfsIncludePrivateVolumes; //
0x80000000L is the flag passed in to include the private volume...

while (volIterator != vfsIteratorStop)
{

if ((err = VFSVolumeEnumerate(&otherVolRefNum, &volIterator)) ==
errNone) {

err = VFSVolumeInfo(otherVolRefNum, &volInfo);
if (err)

 goto Done;
if (volInfo.attributes & vfsVolumeAttrHidden)
{
// This is an internal file volume. Perform actions now...
}

}
}

After you retrieve the volume reference number, the volume can be accessed by
VFSMgr as with any other volume. If the vfsIncludePrivateVolumes flag is omitted,
the private volume is not enumerated. So, for example, in a Treo 650 smartphone or
later, the preceding code enumerates a private volume and the SD slot’s volume.
vfsIncludePrivateVolumes is defined in the PmPalmOSNVFS.h header file.

Applications that must access the private volume directly to store files in the FAT file
system can do so if they are having problems working with large databases because
of the DBCache size. You should use the private volume sparingly, however, because
overuse cuts into the user storage space.

NVFS

 Palm Developer Guide, Palm OS Platform, Rev. J 153

Similarly, you can use the Expansion Manager to see the private volume as a
separate internal slot if it is used with the following flag:

#define expIteratorStart 0L
#define expIteratorStop 0xffffffffL

UInt32 slotIterator = expIteratorStart | expIncludePrivateSlots; //
0x80000000L is
flag passed in to include private slot;

while (slotIterator != expIteratorStop)
{

if ((err = ExpSlotEnumerate(&slotRefNum, &slotIterator)) ==
errNone)

{
// Perform actions now...

}
}

Other than the private volume, some devices may include a separate internal file
volume that can be used for file storage. LifeDrive and Tungsten T5 handhelds, for
example, have an internal file volume that is available as an internal drive. The
following code enumerates two volumes: the internal file volume and the SD slot
volume. You can use vfsVolumeAttrNonRemovable to check whether a volume is
nonremovable, thus indicating that it is an internal volume. You need the
PmPalmOSNVFS.h header file from the Palm OS SDK to do so. The ACCESS® SDK may
not have the flag defined. You can use the vfsIncludePrivateVolumes flag to access
the third private volume in a Tungsten T5 handheld.

UInt32 volIterator = vfsIteratorStart;

while (volIterator != vfsIteratorStop)
{

if ((err = VFSVolumeEnumerate(&otherVolRefNum, &volIterator)) ==
errNone) {

err = VFSVolumeInfo(otherVolRefNum, &volInfo);
if (err)
 goto Done;
if (volInfo.attributes & vfsVolumeAttrNonRemovable)
{

// This is the internal file volume. Perform actions now...
}

}
}

Similarly, you can use the Expansion Manager to access the slots by using the
capability flags expCapabilityNonRemovable and expCapabilityHidden from
the ExpCardInfoType structure to check the slot details. You may need the
PmPalmOSNVFS.h header file from the Palm OS SDK for these flag definitions.

Chapter 10 System Extensions

154 Palm Developer Guide, Palm OS Platform, Rev. J

10.8.3.4 Feature pointer issues
Because feature pointers are allocated in the DBCache, it is possible to run out of
space if you open a very large database. Even if the user store in the NAND flash has
free space, a feature pointer call such as FtrPtrResize can fail if the DBCache is full.
Query the free bytes in DBCache and take the appropriate actions as mentioned in the
preceding sections if you allocate large feature pointers or if you are using feature
pointers while working on large databases.

10.8.3.5 NVFS on Palm OS® 5.4.9

Available on:
■ Centro™ and Treo™ smartphones

■ LifeDrive™ mobile manager

■ Tungsten™ T5, Tungsten™ E2, and Palm® T|X handhelds

■ Palm® Z22 organizer

NVFS on Palm OS v. 5.4.9 and later provides the following enhancements:

■ Alerts for extreme low memory condition

The system warns users more aggressively when the device storage heap is low
on space. Please note that if the storage heap is already full and there is still data
to be flushed, the data will be lost.

■ Minimization of memory fragmentation

The occurrence of memErrNotEnoughSpace should be significantly minimized as the
result of better compaction of DBCache. This optimization in turn makes it easier
for an application to exhaust the available memory. Applications should still check
for available memory and chunk size whenever possible.

■ Slower sorting

Optimizations that are done in OS 5.4.9 have caused the sorting performance to
be slower as a trade-off, but this should only be visible when a huge number of
records are involved.

■ DmQueryRecord is safe to use again

The system should now be able to recover invalid handle and read the record data
back from the non-volatile memory.

■ More aggressive DBCache flushing

Locked records are now unlocked automatically when a database is closed,
including resource record. Closed databases and unlocked records are flushed
more aggressively whenever more space is needed. Applications that are
implementing callbacks or alarm procedures should be extremely careful and
make sure that the code resource is locked at all times and protected with
DMDatabaseProtect() when expected to run.

■ Bug fix for FtrGet(sysFtrCreator, sysFtrNumROMVersion, &romVersion), which
now returns the correct OS version and build number.

NOTE: For information on how to lock code resource and protect a database, refer to
the ACCESS (formerly PalmSource) Developer Knowledge Base.

NVFS

 Palm Developer Guide, Palm OS Platform, Rev. J 155

Due to some changes in NVFS for the Treo 700p, 755p, and Centro smartphones,
when the device runs low on storage space, one of the following three things will
happen (depending on what was happening when space ran out):

1. If the device runs out of space during DmCloseDatabase, the OS will back out the
changes that were made since the last sync and return an error to the calling
application. The user will then see an error alerting them that some data could not
be saved because of low storage space.

2. If the device runs out of storage while it is flushing the cache to make room for a
new allocation (for example, during DmNewRecord or DmResizeRecord), it is
possible that the application that owns the database that is being flushed may not
be the application doing the allocation. Since there's no way to notify the owner
that the data was lost, there is no safe way to return the system to a stable state
after backing out changes. In this scenario, the device will reset, and display the
out-of-space alert after the reset.

3. If the device encountered an error during an explicit call to DmSyncDatabase, the
OS will back out changes that were made since the last sync and return an error
such as vfsErrVolumeFull to the caller. (No alert.)

10.8.4 Optimizing your application for Palm® NVFS devices
Before the introduction of the Non-Volatile File System (NVFS), data on a Palm device
was stored in "volatile" memory that required a constant stream of low power to
maintain data. If a device’s battery became completely drained, data would be lost
until a HotSync operation restored it from a PC.

Beginning with the Treo 650 smartphone and the Tungsten T5 handheld, Palm
devices use "non-volatile" memory, which means that they don't need power to store
data. A device’s battery can be completely drained, or swapped out, and data will
remain in the device.

Applications and data may take up more space on NVFS devices than devices with
traditional “volatile” memory. For this reason, developing applications for NVFS
devices may require some additional work to avoid performance issues.

10.8.4.1 Speeding up actual performance
Applications on most NVFS devices reside in flash memory and must be read from
flash memory at first launch to ensure that they are loaded into DBCache in SDRAM.
(For LifeDrive mobile managers, applications reside on the hard drive.) Therefore,
there is more traffic the first time an application is launched after a reset.

When developing applications for any NVFS device, consider the following methods
of optimization:

■ Do not use PrefSetPreferences and PrefSetAppPreferences to store data.

Many applications use preferences to indiscriminately store application data. On
a RAM-based system, this has little overhead, but on NVFS-based systems it has
significant overhead.

Use Features rather than Preferences to store data that does not need to be
preserved across a soft reset.

It is better to make a single PrefSet call with all of your changes
(at StopApplication for instance) than multiple PrefSet calls.

Chapter 10 System Extensions

156 Palm Developer Guide, Palm OS Platform, Rev. J

Note that a PrefSet call will not generate NVFS traffic if the set preference is
exactly the same as the existing preference. However, if you are using buffers,
make sure they are zeroed so that changing garbage data at the end of the buffer
will not cause spurious writes.

These techniques also apply to the Connection Manager and the Exchange
Manager.

■ Use cache instead of rereading from a file.

In many instances, applications constantly reread the same information from
NVFS files (especially if they use the Media libraries). If your application is
reading from a database, that will already be cached in the DBCache, but if you
are using raw file data on a read-only basis, consider using a cache in either
feature memory or using a FileStream.

In particular, opening and closing the media library is a time-consuming (2-3
seconds) task. To avoid the cost of continually opening the media library, open
the library, generate the bitmaps you will need (such as backgrounds), and cache
those bitmaps to feature memory or temporary databases.

■ Improve memory management.

Using a feature pointer instead of a normal memory pointer has significant
overhead if you are doing many writes because DmWrite is much slower than a
normal memory access.

Using a temporary database (or filestream) to store data can really slow things
down because every DmWrite must be written to the backing store when the
database closes. This is useful when you need to preserve your temporary data
across resets and application launches, but can be a performance drain.

If you are caching a small amount of data (<0.5MB), use heap-based pointers
from MemPtrNew. If you need to cache a larger amount of data (>0.5MB), use
FtrPtrNew.

■ Use DmWrite, FileWrite, and VFSFileWrite only when necessary.

Written data must be automatically saved to the disk, so it can become costly if
you write little bits of data at a time. Your application will perform better if you
make fewer larger writes rather than many small writes.

10.8.4.2 Speeding up perceived performance
■ One of the things that users report in terms of performance is that the screen goes

white or flickers while applications are loading or doing other significant work.

Use WinScreenLock/WinScreenUnlock to freeze the UI on the screen while
you are doing background processing that might make the screen flicker. This is
also useful to reduce the appearance of a slow redraw time since you can redraw
everything and then put it on the real display in one go.

■ Process data at sysAppLaunchCmdReset time.

Much of the time spent by applications launching for the first time after a reset
is in recreating default databases. To save time, you may create default
databases at sysAppLaunchCmdReset time instead of at
sysAppLaunchCmdNormalLaunch time. That way, much of the initial application
launch times are buried within the longer reset time (which already has UI).

■ Keep the event loop running.

5-Way Navigator and Keyboard API

 Palm Developer Guide, Palm OS Platform, Rev. J 157

Slow UI is due in part to the fact that almost all of our libraries and applications
are single-threaded. When a long blocking operation is initiated, the event loop
(which updates all UI) doesn’t run. This means that user input is ignored until the
blocking operation is completed.

■ Display “Please wait” dialogs.

There are circumstances where you cannot avoid a lengthy delay (connecting to
a network service, etc.). Instead of having a non-responsive UI or blank screen,
use shell applications to pop up a “Please wait” dialog or do a
WinScreenLock() while an application with many code resources or a lot of
startup processing is loading. This shell can be as simple as being in the first
code segment, typically running at sysAppLaunchCmdNormalLaunch in
PilotMain. Consider using a pop up a message or progress indicator so the user
doesn’t think they have crashed or hung while the rest of the application
processing is running. Obviously, this is a solution of last resort after exhausting
other avenues to speed up an application.

10.9 5-Way Navigator and Keyboard API
Available on:
■ Centro™ and Treo™ smartphones

■ Tungsten™ and Palm® T|X handhelds

■ Zire™ 31 and Zire™ 72 handhelds

■ Palm® Z22 organizer

This section describes the software associated with the 5-way navigator button.

In addition to the information provided here, you can refer to the sample code in the
Palm OS SDK for information on how to use this module.

10.9.1 5-way navigator terminology
These terms are used in the following section:

■ Object focus mode refers to the state when a form’s focus is enabled and the
5-way keys are used for navigation.

■ Application focus mode refers to the state when a form’s focus is not enabled
and Up and Down are used as page-up and page-down keys.

■ Tab order refers to the horizontal ordering of the objects or, in other words,
the order in which objects receive the focus when Right is pressed repeatedly.

■ Action buttons refers to the command buttons that are lined up along the
bottom of a form.

■ Interaction mode refers to the state when the 5-way keys interact with the object
rather than move the focus. For example, a field object is in interaction mode
when the 5-way keys move its insertion point, and a list object is in interaction
mode when the 5-way keys move a highlight through the list items.

Chapter 10 System Extensions

158 Palm Developer Guide, Palm OS Platform, Rev. J

10.9.2 Overview of 5-way navigator
The navigation model is two-dimensional. Left and Right move the focus horizontally,
while Up and Down move the focus vertically.

Depending on the object type of the object that has the focus, Center either simulates
a tap on the focused object or toggles the interaction mode of the focused object.

To support this functionality, the system was expanded to generate and handle
additional navigation events. These include 5-way key events and the focus change
events. The events are handled when an application calls FrmDispatchEvent().
During such a call, the events are handled in the following manner. (Note that steps
2 and 3 are part of FrmHandleEvent().)

1. The current form’s custom event handler receives the event.

This is when the application can override default navigation behavior. If the
handler returns true, no more event processing occurs and steps 2 and 3 are
never reached.

2. If the event is a key event, the focused object’s type is obtained. If the event is
a focus change event, the type of the object specified in the event is obtained.

The handler specific to the object type obtained is then called on the event.
(For example, CtlHandleEvent() is called if the object is a control.) The various
object type handlers have been expanded to handle navigation events that are
associated with type-specific navigation behavior. If the handler returns true,
no more event processing occurs and step 3 is never reached.

3. A generic focus handler is called on the event. This handler is primarily
responsible for moving the focus in the form.

10.9.3 Navigation events
The Palm smartphones and the Tungsten T5 handheld not only generate keyDown
events for keys, but they also generate keyHold and keyUp events for keys. A keyHold
event is generated when a key is held for one second and a keyUp event is generated
when a key is released. keyHold and keyUp events have the same fields as keyDown
events—character field, modifiers field, and key code field.

When object focus mode is on, the 5-way button generates keyDown, keyHold, and
keyUp events with the following character values: vchrRockerUp, vchrRockerDown,
vchrRockerLeft, vchrRockerRight, and vchrRockerCenter.

When object focus mode is off, the 5-way button generates keyDown, keyHold, and
keyUp events with the following character values: vchrPageUp, vchrPageDown,
vchrRockerLeft, vchrRockerRight, and vchrRockerCenter.

The page keys are enqueued when object focus mode is off so that forms that are
not 5-way navigator–aware do not lose their paging functionality.

Focus change events are generated as the navigation focus moves in a form.
A frmObjectFocusTake event is sent when an object should take the focus. The
system’s internal focus structures are updated when the event is handled, not when
it is sent. A frmObjectFocusLost event is sent after an object has lost the focus. The
system’s internal focus structures have already been updated when this event is sent.
Therefore, it simply initiates the redrawing of the object that lost the focus.

5-Way Navigator and Keyboard API

 Palm Developer Guide, Palm OS Platform, Rev. J 159

10.9.3.1 Option and Shift modifiers
Palm smartphones have Option and Shift keys. If the Option key is held down while
the 5-way button is pressed, the optionKeyMask in the 5-way button’s key events
is set. Similarly, if the Shift key is held down while the 5-way button is pressed, the
shiftKeyMask in the 5-way button’s key events is set.

These masks allow applications to assign secondary features and functionality
to the 5-way button on Palm smartphones.

10.9.4 Including objects as skipped objects
Editable fields, tables with fields, pop-up triggers, and selector triggers automatically
get navigation focus when the user taps them. If the object is not in the tab order, then
the system simply moves the focus to the first object in the tab order when the user
presses a directional button after tapping the object. Such a movement of the focus
may not make sense to the user.

To ensure that focus movement is always logical to the user, such objects
should be included in the tab order but marked as skipped by setting the
kFrmNavObjectFlagsSkip flag. This flag can be set through FrmSetNavEntry(),
through FrmSetNavOrder(), or in a navigation resource. The object is skipped
when the user moves the focus with the 5-way buttons, but the system knows how
to move the focus from the object after the user taps it.

10.9.5 Default navigation
If a form does not have a navigation resource, the system determines the navigation
order for the form dynamically. It determines whether the form is initially in object
focus mode or application focus mode, which UI objects can receive the focus, the
tab order, the vertical order, where the focus begins, and whether the focus cycles.

IMPORTANT: To truly support 5-way navigator, an application should have fnav
resources in its resource file rather than rely on the default navigation order.

10.9.5.1 Initial focus mode
Forms are separated into modal and nonmodal forms. The window of a modal form
has the modal flag set. You can check this flag by calling WinModal() on the form’s
window. All other forms are considered nonmodal.

Initially, modal forms are placed in object focus mode, and nonmodal forms are
placed in application focus mode. You can programmatically change the mode of
a form with FrmSetNavState().

Chapter 10 System Extensions

160 Palm Developer Guide, Palm OS Platform, Rev. J

10.9.5.2 UI objects included in the navigation order
All UI objects in a form are included in the navigation order. However, during form
initialization, only the following objects are not marked as skipped:

■ Usable, enabled controls (controls include command buttons, push buttons,
check boxes, pop-up triggers, selector triggers, repeating buttons, sliders, and
feedback sliders)

■ Usable lists

■ Usable, editable fields

NOTE: An application can clear the skipped flag for any object in the form by
calling FrmSetNavOrder() or FrmSetNavEntry().

If an object is not initially included in the default order, it is not included later if it
becomes a valid focus object. For example, if a control that was initially disabled is
enabled, it is not included in the default order when it is enabled.

However, objects that were initially included in the default order that later become
invalid focus objects are skipped. For example, if a field was initially editable and
was later made noneditable, it is skipped.

10.9.5.3 Tab order
The tab order is determined by taking the UI objects that can receive the focus and
sorting them by their left coordinate and then their top coordinate. A stable sort is
used (insertion sort) so that after sorting:

■ Objects are sorted by their top position.

■ Objects with the same top position are sorted by their left position.

10.9.5.4 Vertical order
The objects in the vertical order are a subset of those in the tab order. The vertical
order is determined by iterating from the first object in the tab order to the last and
including only the following objects:

■ The first object

■ Any subsequent object that is completely below the previously included object

This algorithm results in only the leftmost objects of the form being included in the
vertical order.

Because the vertical order may not include all the objects in the tab order, some
objects that can receive the navigation focus cannot be navigated to by only using
the Up and Down keys. In other words, navigating to objects that are in the tab

5-Way Navigator and Keyboard API

 Palm Developer Guide, Palm OS Platform, Rev. J 161

order but not in the vertical order will require some use of the Left or Right key.
For example, consider the following dialog box:

The check box and the OK button are the leftmost objects in their row and therefore
are the objects in the vertical order. To get to the Cancel button from the top check
box, the user would have to press Down and then Right. There is no way to get to the
Cancel button by using only the Up and Down keys.

If an object that was initially usable and was part of the vertical order is later made
nonusable, and an application has not made any changes to the order through the
navigation API functions, the vertical order is recalculated using the algorithm
previously described. The vertical order is not recalculated when an application
has made changes to the order, to ensure that the application’s changes are not
overridden.

10.9.5.5 Initial focus
If there are any action buttons, the focus is initially given to the leftmost one. If there
are no action buttons, the focus is given to the first object in the tab order.

The first action button is identified using the following rules:

■ The usable, enabled objects with the greatest top coordinate values are identified.
In other words, the objects in the form’s bottom row are identified.

■ The first action button is the leftmost command button among those objects.
If there are no command buttons among these objects, the focus is given to the
first object in the tab order.

10.9.5.6 Cycling
On Palm smartphones and the Tungsten T5 handheld, the focus never cycles
horizontally. When the focus is on the first object in the tab order, pressing Left does
not move the focus to the last object, and when the focus is on the last object,
pressing Right does not move the focus to the first object.

Although the focus never cycles vertically on Treo 600 smartphones, the focus does
cycle vertically in modal dialog boxes on Treo 650 smartphones and later, and
Tungsten T5 handhelds. On Treo 600 smartphones and in nonmodal dialog boxes on
Treo 650 smartphones and later, and Tungsten T5 handhelds, when the focus is on
the top object in the vertical order, pressing Up does not move the focus to the
bottom object, and when the focus is on the bottom object, pressing Down does not
move the focus to the top object. In modal dialog boxes on Treo 650 smartphones
and later, and Tungsten T5 handhelds, pressing Up while the focus is on the top
object does move the focus to the bottom object, and pressing Down while the focus
is on the bottom object does move the focus to the top object.

Chapter 10 System Extensions

162 Palm Developer Guide, Palm OS Platform, Rev. J

10.9.6 Custom navigation
Applications can customize navigation by providing a navigation resource for a form,
by making navigation API calls, and by handling navigation events.

10.9.6.1 Hex navigation resource
A navigation resource specifies what UI objects in the form are included in the
navigation order, what the tab order is, what the vertical order is, whether the focus
is initially on or off, where the focus begins, where the focus can move, and what the
bottom-left object is. (The bottom-left object information is needed to cycle the focus
from the top of the form.)

IMPORTANT: As mentioned before, an application should include fnav resources in
its resource file rather than rely on default navigation order.

For the system to detect a navigation resource, the navigation resource must be in
the same database as its associated form. For the system to detect that a form has
a navigation resource, the navigation resource must be in the same database as
the form.

Technically, an application only needs a navigation resource if the behavior is not the
correct behavior for a form. However, the creation of navigation resources for all
forms that have navigation is recommended because the default navigation order
may be different on various platforms and some platforms may not even provide a
default navigation order.

The resource is a hex resource of type formNavRscType (fnav). It is defined as a 68K
format (big endian) resource.

The term “hint” is appended to the name of those fields that are used only by
some platforms. For example, the bottomLeftObjectIDHint is used only by those
platforms that have their focus cycle from the top of the form to the bottom. If an
application specifies a value for this field, it will run properly on platforms that do
cycle and platforms that do not cycle.

The navigation resource has a header section and a list-of-objects section. The format
of the header is described in the Palm API Guide, Palm OS Platform.

10.9.6.2 PilRC navigation resource
The PilRC resource compiler supports a navigation resource format that is easier to
create than the HEX resource just described. Many of the fields required by the hex
resource are optional in the navigation resource and a navigation map that allows UI
objects to be specified in row-column fashion is supported. This format is supported
starting with PilRC 3.0 and is documented in the manual packaged with PilRC. PilRC
can be obtained at pilrc.sourceforge.net.

10.9.6.3 Objects that become nonusable
The system skips over nonusable objects when a user moves through the tab order.
Objects that reside in the same position in the form and are alternately shown should
therefore be placed next to each other in the tab order and have the same above and
below objects.

http://pilrc.sourceforge.net

5-Way Navigator and Keyboard API

 Palm Developer Guide, Palm OS Platform, Rev. J 163

If an object in the vertical order becomes nonusable, and the user navigates up to it,
the object above receives the focus instead. The down case works the same way,
except that the object below the nonusable object receives the focus. If you want
an application to behave differently, use the API calls to explicitly set which object
should replace the nonusable object in the vertical order.

10.9.6.4 Handling navigation events
System navigation behavior is executed when FrmHandleEvent() receives a
navigation event. Because FrmDispatchEvent() calls a form’s custom event
handler before calling FrmHandleEvent(), a form can easily override default
navigation behavior by handling navigation events in its custom event handler.

As explained earlier, the system’s internal focus structures are updated when a
frmObjectFocusTake event is handled, not when it is sent. Therefore, an application
must explicitly call FrmSetFocus() on the event’s associated object if it handles a
frmObjectFocusTake event.

A frmObjectFocusLost event is sent after an object has lost the focus. The internal
focus structures will have already been updated when this event is sent. Therefore,
an application does not have to do anything besides implement its desired custom
behavior if it handles a frmObjectFocusLost event.

With tables and gadgets, applications must intercept navigation events. These UI
object types have minimal default behavior, if any.

For example, when an application has a table that is included in the focus order,
the application might perform the following actions in its custom handler:

■ frmObjectFocusTake event for table:

Call FrmSetFocus() on the table, highlight the first row of the table, and
return true.

■ frmObjectFocusLost event for table:

Unhighlight row in table and return true.

■ An Up keyDown event when table has the focus:

If the highlight is not on the table’s top row, move the highlight up a row, and
return true.

■ A Down keyDown event when table has the focus:

If the highlight is not on the table’s bottom row, move the highlight down a row,
and return true.

In general, it is assumed that most modal forms do not alter the default navigation
behavior, while most nonmodal forms do. That is why navigation is automatically
enabled only for modal forms. Nonmodal forms are usually the main views of an
application and therefore require more custom behavior.

Chapter 10 System Extensions

164 Palm Developer Guide, Palm OS Platform, Rev. J

10.9.7 Focus treatment
The functions that draw UI objects are updated to know how to draw the new visual
states introduced by navigation. The system uses a blue square ring, a blue rounded
ring, or blue bars to indicate that an object has the focus:

CtlDrawControl() checks whether the control it is drawing has the navigation focus,
and draws a focus ring around the control if it does.

FldDrawField() checks whether the field it is drawing has the navigation focus. The
function then checks whether the field is in interaction mode. If it is not in interaction
mode, the function draws focus bars above and below the field and does not draw
the insertion point. If it is in interaction mode, the function draws the field normally
and draws the insertion point.

If LstDrawList() is drawing an embedded list, it checks whether the list has the
navigation focus. The function then checks whether the list is in interaction mode.
If it is in interaction mode, the function draws a focus ring around the temporarily
selected item. If it is not in interaction mode, the function draws a focus ring around
the entire list.

API functions are provided if you want to draw focus rings around objects other than
controls, fields, and lists in your application. On the Treo 600 smartphone, the
functions are HsNavDrawFocusRing(), HsNavRemoveFocusRing(), and
HsNavGetFocusRingInfo(). On the Treo 650 smartphone and later, and the Tungsten
T5 handheld, the functions are FrmNavDrawFocusRing(), FrmNavRemoveFocusRing(),
and FrmNavGetFocusRingInfo().

5-Way Navigator and Keyboard API

 Palm Developer Guide, Palm OS Platform, Rev. J 165

The system ensures that no more than one ring is ever drawn on a form. If a ring is
being drawn and there is already a ring on the form, the system removes the ring
already displayed on the form before drawing the new ring. A ring drawn with
HsNavDrawFocusRing() or FrmNavDrawFocusRing() should never be directly erased.
If you want your application to remove the ring, it should call
HsNavRemoveFocusRing() or FrmNavRemoveFocusRing().

On Tungsten T5 handhelds, when the Active Input Area is collapsed or expanded,
the system automatically removes any focus ring before the area is collapsed or
expanded and, after the area has been collapsed or expanded, sends a
frmObjectFocusTake event with the ID of the object that had the focus ring.

10.9.8 Navigational API, Button Mapping, and behavioral
differences between Palm smartphones and Tungsten™ T5
handhelds

This section describes navigational differences between the Treo 600 smartphones
and later, and the Tungsten T5 handheld.

10.9.8.1 Palm OS® features
Treo 600 smartphones and later, and Tungsten T5 handhelds, set the
hsFtrIDNavigationSupported feature. The feature’s creator is hsFtrCreator.
The value of the feature is the version number of the Palm Navigation API.
On Treo 600 smartphones the version is 1, and on Treo 650 and Treo 700p
smartphones and later and Tungsten T5 handhelds the version is 2.

Treo 650, Treo 700p, Treo 755p, and Centro smartphones and Tungsten T5 handhelds
also set the sysFtrNumFiveWayNavVersion feature. The feature’s creator is
sysFileCSystem. The value of the feature is the version number of the ACCESS
(formerly PalmSource) navigation API. On Treo 650, Treo 700p, Treo 755p, and
Centro smartphones and Tungsten T5 handhelds, the version is 1. Version 2 of the
Palm Navigation API and version 1 of the ACCESS Navigation API are the same.

Treo 600 smartphones with software version 1.12, Treo 650, Treo 700p, Treo 755p, and
Centro smartphones, and Tungsten T5 handhelds set the sysFtrNumUIHardwareFlags
feature. The feature’s creator is sysFileCSystem. The value of this feature is a bit field
that describes what hardware is available on the device. The bit definitions used with
the feature’s value are as follows:

■ sysFtrNumUIHardwareHard5Way - The device has a 5-way rocker

■ sysFtrNumUIHardwareHasThumbWheel - The device has a thumb wheel

■ sysFtrNumUIHardwareHasThumbWheelBack - The device has a thumb wheel with a
Back button

■ sysFtrNumUIHardwareHasKbd - The device has a dedicated keyboard

Chapter 10 System Extensions

166 Palm Developer Guide, Palm OS Platform, Rev. J

On Treo 600 smartphones with software version 1.12, Treo 650, Treo 700p, Treo 755p,
and Centro smartphones, and Tungsten T5 handhelds, the
sysFtrNumUIHardwareHas5Way is set. On Treo 600 smartphones with software version
1.12 and on Treo 650, Treo 700p, Treo 755p, and Centro smartphones, the
sysFtrNumUIHardwareHasKbd is also set.

NOTE: The feature not being set on the original Treo 600 smartphone software was
an oversight. This problem was fixed with software update 1.12 available from the
Palm Customer Support download area.

The Tungsten T5 handheld no longer supports the navFtrVersion feature supported
on Zire handhelds and earlier Tungsten handhelds.

10.9.8.2 Functions
Treo 600 smartphones and later support HsNavDrawFocusRing(),
HsNavRemoveFocusRing(), HsNavGetFocusRingInfo(), and HsNavObjectTakeFocus()
calls. Treo 650 smartphones and later, LifeDrive, Palm T|X, and Tungsten T5
handhelds support FrmNavDrawFocusRing(), FrmNavRemoveFocusRing(),
FrmNavGetFocusRingInfo(), and FrmNavObjectTakeFocus() calls.

Except for the prefix differences in their names, these functions work exactly the
same way. Applications should transition to using the FrmNav API calls, because the
HsNav calls are deprecated and remain only on Treo 650 smartphones for Treo 600
smartphone backward compatibility.

IMPORTANT: Do not make HsNav calls on Tungsten T5 handhelds. HsNav calls made
on Tungsten T5 handhelds will fail, most likely with a Sys0505 error, which means
that the module that exports the function is not on the handheld.

Because Treo 600 smartphones support only the HsNav version of these calls and
Tungsten T5 handhelds support only the FrmNav version of these calls, applications
intended to run on both devices must check their context before making these calls.
The suggested method is to check the version number of the
hsFtrIDNavigationSupported feature and decide whether to make an HsNav call or a
FrmNav call based on the version value. Specifically, HsNav calls should be made if the
version is 1, and FrmNav calls should be made if the version is 2. The decision about
what call to make must be made at runtime. For example:

if (FtrGet (hsFtrCreator, hsFtrIDNavigationSupported, &version) == 0)
 {
 if (version == 1)
 HsNavObjectTakeFocus (formP, objID);
 else // if version >= 2
 FrmNavObjectTakeFocus (formP, objID);
 }

5-Way Navigator and Keyboard API

 Palm Developer Guide, Palm OS Platform, Rev. J 167

10.9.8.3 Button Mapping
This section describes the button mapping schemes for Treo smartphones.

10.9.8.3.1 Virtual Keys on Treo Smartphones

Traditional Virtual Keys for Palm Devices

vchrHard1

vchrHard2

vchrHard3

vchrHard4

vchrHardPower

vchrPageUp

vchrPageDown

vchrLaunch (usually silk-screened on non-keyboard devices)

vchrMenu (usually silk-screened on non-keyboard devices)

vchrCalc (usually silk-screened on non-keyboard devices)

vchrFind (usually silk-screened on non-keyboard devices)

Treo Specific Virtual Keys

hsChrOptHard1

hsChrOptHard2

hsChrOptHard3

hsChrOptHard4

vchrHard11

hsChrOptHard11

hsChrOptHardPower

Chapter 10 System Extensions

168 Palm Developer Guide, Palm OS Platform, Rev. J

10.9.8.3.2 Button Mapping for Treo™ 600

The following table shows how the keyboard driver maps virtual characters to device
keys for the Treo 600 smartphone.

NOTE: EvtGetEvent converts vchrPageUp/Down into vchrRockerUp/Down if navigation
is enabled for the active form.

Treo 600

Traditional Keys vchrHard1 Phone key (1st key in app row)

vchrHard2 Calendar key (2nd key in app row)

vchrHard3 Mail/Msg key (3rd key in app row)

vchrHard4 Screen key (4th key in app row)

vchrHardPower Power key (on top of device)

vchrPageUp Rocker-up key

vchrPageDown Rocker-down key

vchrLaunch Home key (bottom row of keyboard)

vchrMenu Menu key (bottom row of keyboard)

vchrCalc None

vchrFind Option + Left Shift key

Treo-specific Keys hsChrOptHard1 Option + Phone key

hsChrOptHard2 Option + Calendar key

hsChrOptHard3 Option + Mail/Msg key

hsChrOptHard4 Option + Screen key

vchrHard11 None

hsChrOptHard11 None

hsChrOptHard
Power

Option + Power key

vchrMenu Menu key (Right, flattened key in top row)

vchrCalc None

vchrFind Option + Left Shift key

5-Way Navigator and Keyboard API

 Palm Developer Guide, Palm OS Platform, Rev. J 169

10.9.8.3.3 Button Mapping for Treo™ 650

The following table shows how the keyboard driver maps virtual characters to device
keys for the Treo 650 smartphone.

NOTE: EvtGetEvent converts vchrPageUp/Down into vchrRockerUp/Down if navigation
is enabled for the active form.

Treo 650

Traditional Keys vchrHard1 Phone/Send key (1st key in app row)

vchrHard2 Calendar key (2nd key in app row)

vchrHard3 Mail/Msg key (3rd key in app row)

vchrHard4 Power/End app key (4th key in app row)

vchrHardPower None

vchrPageUp Rocker-up key

vchrPageDown Rocker-down key

vchrLaunch Home key (Left, flattened key in top row)

vchrMenu Menu key (Right, flattened key in top row)

vchrCalc None

vchrFind Option + Left Shift key

Treo-specific Keys hsChrOptHard1 Option + Phone/Send key

hsChrOptHard2 Option + Calendar key

hsChrOptHard3 Option + Mail/Msg key

hsChrOptHard4 Option + Power/End app key

vchrHard11 None

hsChrOptHard11 None

hsChrOptHard
Power

None

vchrLaunch vchrMenu

vchrHard1 vchrHard2 vchrHard3 vchrHard4

Chapter 10 System Extensions

170 Palm Developer Guide, Palm OS Platform, Rev. J

10.9.8.3.4 Button Mapping for Treo™ 680, Treo™ 700p, Treo™, and 755p

The following table shows how the keyboard driver maps virtual characters to device
keys for the Treo 680, Treo 700p, and Treo 755p smartphones.

NOTE: EvtGetEvent converts vchrPageUp/Down into vchrRockerUp/Down if navigation
is enabled for the active form.

* Indicates differences from Treo 650 smartphones.
** The vchrMenu key is in a different location on the device, but functionality is the same.

Treo 680, Treo 700p, and Treo 755p smartphones

Traditional Keys vchrHard1* Phone (1st key in app row)

vchrHard2 Calendar key (2nd key in app row)

vchrHard3 Mail/Msg key (3rd key in app row)

vchrHard4* Home key (4th key in app row)

vchrHardPower* Power/End key (Right, flattened key in
top row)

vchrPageUp Rocker-up key

vchrPageDown Rocker-down key

vchrLaunch* Option + Home key

vchrMenu** Menu key (bottom row of keyboard)

vchrCalc None

vchrFind Option + Left Shift key

Treo-specific
Keys

hsChrOptHard1* Option + Phone key

hsChrOptHard2 Option + Calendar key

hsChrOptHard3 Option + Mail/Msg key

hsChrOptHard4* None

vchrHard11* Send key (Left, flattened key in top
row)

hsChrOptHard11* Option + Send key

hsChrOptHardPower* Option + Power/End key

vchrHard11 vchrHardPower

vchrHard1 vchrHard2 vchrHard3 vchrHard4

5-Way Navigator and Keyboard API

 Palm Developer Guide, Palm OS Platform, Rev. J 171

It is important to note that launching an application in response to pressing an
application key occurs in SysHandleEvent after a
sysNotifyVirtualCharHandlingEvent notification is sent. Therefore, any
application that processes key events before SysHandleEvent and/or handles
sysNotifyVirtualCharHandlingEvent notifications could prevent application
launching from working properly.

10.9.8.3.5 Button Mapping for Centro™ smartphones

The following table shows how the keyboard driver maps virtual characters to device
keys for the Centro smartphone.

NOTE: EvtGetEvent converts vchrPageUp/Down into vchrRockerUp/Down if navigation
is enabled for the active form.

Centro smartphone

Traditional Keys vchrHard1 Phone

vchrHard2 Calendar key (App key 2)

vchrHard3 Mail/Msg key (App key 3)

vchrHard4 Home key

vchrHardPower Power/End key (App key 4)

vchrPageUp Rocker-up key

vchrPageDown Rocker-down key

vchrLaunch Option + Home key

vchrMenu Menu key (bottom row of keyboard)

vchrCalc None

vchrFind Option + Left Shift key

vchrHardPower/

Phone Home/Launch

Mail/MessageCalendar

vchrHard11/
App Key 1 App Key 4

vchrHard1 vchrHard4

Send Power

vchrHard2/App Key 2 vchrHard3/App Key 3

Chapter 10 System Extensions

172 Palm Developer Guide, Palm OS Platform, Rev. J

It is important to note that launching an application in response to pressing an
application key occurs in SysHandleEvent after a
sysNotifyVirtualCharHandlingEvent notification is sent. Therefore, any
application that processes key events before SysHandleEvent and/or handles
sysNotifyVirtualCharHandlingEvent notifications could prevent application
launching from working properly.

10.9.8.3.6 Option plus App key Mapping for Centro™ smartphones

Pressing the Option key plus Launcher behaves the same as pressing the Launcher
key alone. Pressing the Option key plus App key 2, 3 or 4 launches applications
associated by the user through Button Preferences panel in the Home Menu.

The following table shows the default Option Key plus App Key mapping.

Centro-specific
Keys

hsChrOptHard1 Option + Phone key

hsChrOptHard2 Option + Calendar key

hsChrOptHard3 Option + Mail/Msg key

hsChrOptHard4 None

vchrHard11 Send key (App key 1)

hsChrOptHard11 Option + Send key

hsChrOptHardPower Option + Power/End key

Option + App Key Application

Option + Phone Web Browser

Option + Calendar World Clock

Option + Message VersaMail

5-Way Navigator and Keyboard API

 Palm Developer Guide, Palm OS Platform, Rev. J 173

10.9.8.3.7 Button Mapping scheme in Palm® smartphones

The button mapping scheme of the Treo 680, Treo 700p, Treo 755p, and Centro
smartphones differ from the Treo 650 in the following significant ways:

1. Phone Application and Send Key

On the Treo 650 smartphone, the Phone Application and Send functionality were
on the same key. On the Treo 680, Treo 700p, Treo 755p, and Centro smartphones
this has changed; Send functionality is no longer associated with the Phone
Application key. To associate behavior with the Send key, you should now use
vchrHard11 instead of vchrHard1.

2. Home Key

On the Treo 650 smartphone, the Home key was associated with the keyLaunch
keyCode (or the keyBitExt2Launcher bit). The Home key on the Treo 680, Treo
700p, Treo 755p, and Centro smartphones are associated with the keyHard4
keyCode (and the keyBitHard4 bit) instead. The Home key generates vchrHard4
key events when it is not modified by Option. When it is modified by the Option
key, the Home key generates vchrLaunch key events.

It is important to note that instead of enqueueing hsChrOptHard4 key events when
the Launcher key is modified by an Option, vchrLaunch is enqueued. This is
necessary because some games that perform pre-SysHandleEvent processing will
only exit if they see a vchrLaunch key event.

NOTE: Because vchrLaunch is enqueued instead of hsChrOptHard4, any functionality
associated with hsChrOptHard4 will be lost on the Treo 680, Treo 700p, Treo 755p, and
the Centro.

The Home key will switch to Launcher in two instances:

1. When it is unmodified by the Option key

In this case, the Home key generates a vchrHard4 keyDown event,
SysHandleEvent broadcasts a sysNotifyVirtualCharHandlingEvent
notification, and then SysHandleEvent switches to Launcher if the notification
is unhandled.

2. When it is modified by the Option key

In this case, the Home key generates a vchrLaunch keyDown event,
SysHandleEvent broadcasts a sysNotifyVirtualCharHandlingEvent
notification, and then SysHandleEvent switches to Launcher if the notification
is unhandled.

Additionally:

– Events generated by the Home key will have keyHard4 in the keyCode field

– Passing the keyLaunch keyCode to PmKeyKeysPressed, PmKeyStop, or
PmKeyEnable has no effect.

– Passing the keyLaunch keyCode to PmKeyKeyCodeToChrCode returns 0 for the
character and modifiers.

– Passing the keyHard4 keyCode to PmKeyKeysPressed, PmKeyStop, or
PmKeyEnable affects the behavior of the Home key.

Chapter 10 System Extensions

174 Palm Developer Guide, Palm OS Platform, Rev. J

– Passing the keyHard4 keyCode to PmKeyKeyCodeToChrCode returns vchrHard4 if
optionKeyMask is not set in the passed-in modifiers and vchrLaunch if
optionKeyMask is set in the passed-in modifiers.

– Passing vchrHard4 or vchrLaunch to PmKeyChrCodeToKeyCode returns keyHard4.

– Neither vchrHard4 nor vchrLaunch can be remapped to a different application
through the user interface or programmatically.

3. Power Key

The dedicated power key, which was removed from the Treo 650, has been
brought back on the Treo 680, Treo 700p, Treo 755p, and Centro. The dedicated
power key enqueues vchrHardPower.

4. PmKeyAttrGet

Several attributes have been added to PmKeyAttrGet that will allow an
application to determine the functionality that is mapped to specific keys:

– pmKeyAttrGetLauncherKeyCode returns the keyCode of the Home key

– pmKeyAttrGetMenuKeyCode returns the keyCode of the Menu key

– pmKeyAttrGetSendKeyCode returns the keyCode of the Send key

– pmKeyAttrGetEndKeyCode returns the keyCode of the End key

– pmKeyAttrGetPhoneKeyCode returns the keyCode of the Phone key

Please note that these attributes are only available in devices that have
PmKey Library API version 3 or later. Therefore, when you call PmKeyAttrGet, do
one of the following things:

1. Verify that the PmKey library is version 3 or later by using the following code:

(sysGetLibAPIVersionMajor(pmKeyLibVersion) >= 3)

2. Fail gracefully if PmKeyAttrGet returns pmErrNotSupported.

NOTE: Due to the location of the Home key, if you cannot exit a game through the
Home key, Option + Home key, or the game menus, try pressing and holding the Side
key. This should launch the application associated with the Side key and allow you to
exit the game.

5-Way Navigator and Keyboard API

 Palm Developer Guide, Palm OS Platform, Rev. J 175

10.9.8.4 Associating custom behavior with the Center button
Treo 600 smartphones, Treo 650 smartphones and later, Centro smartphones, and
Tungsten T5 handhelds generate the following key events for Center button actions:

On Treo 600 smartphones and later, associating custom behavior with the Center
button simply entails handling the vchrRockerCenter keyDown event. Applications
can handle the other events as well, although most applications will not need to. If an
application handles the other events, it is responsible for making sure that multiple
actions are not triggered by the Center button. For example, an application that
performs an action on keyUp should ensure that no action is performed on keyDown.

On Treo 600 smartphones, by default, a Center button press and hold does nothing
different from a Center button press. On Treo 650 smartphones and later, and
Tungsten T5 handhelds, however, if the Center button is pressed and held, the
Attention dialog box is displayed.

As such, on Treo 650 smartphones and later, and Tungsten T5 handhelds, an
application cannot associate an action with the press of the Center button because it
is not yet known whether the Center button is going to be pressed or pressed and
held. If an application associates an action on press and then the button is pressed
and held, two actions will be triggered by the Center button. On Treo 650
smartphones and later, and Tungsten T5 handhelds, actions should occur on the
release of the Center button and only if the Center button was not held.

Action Treo 600 smartphone Treo 650 and later Palm smartphones, and
Tungsten T5 handheld

Press keyDown event with
chr=vchrRockerCenter,
keycode=keyRockerCenter, and
modifiers=commandKeyMask.

keyDown event with chr=vchrHardRockerCenter,
keycode=keyRockerCenter, and
modifiers=commandKeyMask.

Continuous
Press

keyDown event with
chr=vchrRockerCenter,
keycode=keyRockerCenter, and
modifiers=autoRepeatKeyMask

| commandKeyMask.

keyDown event with chr=vchrHardRockerCenter,
keycode=keyRockerCenter, and
modifiers=autoRepeatKeyMask |

commandKeyMask.

Held for one
second or
longer

keyHold event with
chr=vchrRockerCenter,
keycode=keyRockerCenter, and
modifiers=commandKeyMask.

keyHold event with chr=vchrHardRockerCenter,
keycode=keyRockerCenter, and
modifiers=commandKeyMask.

Release keyUp event with
chr=vchrRockerCenter,
keycode=keyRockerCenter, and
modifiers=commandKeyMask.

keyUp event with chr=vchrHardRockerCenter,
keycode=keyRockerCenter, and
modifiers=commandKeyMask. (Consumed by
SysHandleEvent if the system handled keyHold
of vchrHardRockerCenter.)

keyDown event with chr=vchrRockerCenter,
keycode=0, and modifiers=commandKeyMask. (If
the keyDown event vchr=vchrHardRockerCenter
is not handled and the system does not handle
the keyHold event of vchrHardRockerCenter.)

Chapter 10 System Extensions

176 Palm Developer Guide, Palm OS Platform, Rev. J

To minimize the changes required to make Treo 600 smartphone applications
work with Treo 650 smartphones and Tungsten T5 handhelds, on these devices a
vchrRockerCenter keyDown event is generated on Center button release rather than
on press, and it is only generated on release if the Center button was not held.

This means that an application can safely handle any vchrRockerCenter keyDown
event it receives without the Center button triggering multiple actions. The
application need not check to see if it is running on a Treo 600 smartphone, nor does
it need to determine whether the Center button is held before handling the event.
This also means that a continuous press keyDown event, a keyHold event, and a keyUp
event for vchrRockerCenter are not generated on Treo 650 smartphones and
Tungsten T5 handhelds. See the next section for what new events are generated
on Treo 650 smartphones and Tungsten T5 handhelds.

10.9.8.5 Center button events for Treo™ 650 smartphones and
later, and Tungsten™ T5 handhelds
vchrHardRockerCenter key events are generated on Treo 650 smartphones and later,
and Tungsten T5 handhelds in the same fashion that vchrRockerCenter key events
are generated on Treo 600 smartphones. Only Treo 650 smartphone and later, and
Tungsten T5 handheld applications that need more information on the state of the
Center button than what the vchrRockerCenter keyDown event provides need to
handle vchrHardRockerCenter key events.

The system will not handle a vchrHardRockerCenter keyHold event if a form’s
custom handler, the handler associated with a form by FrmSetEventHandler, handles
a vchrRockerHardCenter keyDown event. This prevents an action from occurring on
both the press and hold of the Center button.

If an application did not handle the vchrHardRockCenter keyDown event and the
system did not handle the vchrHardRockerCenter keyHold event, a keyDown event
with chr=vchrRockerCenter, keycode=0, and modifiers=commandKeyMask is
generated on release.

Even though an application can handle Center presses, doing so is not recommended
because it prevents the Attention dialog box from being displayed when the Center
button is held.

5-Way Navigator and Keyboard API

 Palm Developer Guide, Palm OS Platform, Rev. J 177

10.9.8.6 Page scrolling

10.9.8.6.1 Page scrolling on Treo™ 600 and Treo™ 650

On Treo 650 smartphones and Tungsten T5 handhelds, paging through lists of
records or through lines of text is easier than it is on Treo 600 smartphones. On Treo
600 smartphones, when the focus is on a multi-line field that is not in interaction
mode, Up and Down move the focus off the field and to the object above or below.
On Treo 650 smartphones and Tungsten T5 handhelds, Up and Down still move
the focus to the object above or below if the top or bottom line of text is showing.
However, if the top or bottom line of text is not showing, then Up and Down pages
the field’s text up or down. Only after the top or bottom is reached and Up or Down
is released and pressed again does the focus move to the object above or below.
Users can still easily move the focus off the field by pressing the Center button if
the field is in interaction mode, and then pressing Left or Right. Focus bars above
and below a field convey that Up and Down behave in this manner.

Navigation behavior for tables is to be completely implemented by third-party
applications. For tables in Palm applications, the same paging behavior the system
uses for multi-line fields is used for Up and Down. Additionally, if a table uses Center
to open a record, Left takes the table out of interaction mode. Without this extra
functionality added to the Left button, there would be no easy way to move the focus
off a table.

For consistency’s sake and to ensure a good user experience, third-party applications
should follow these navigation conventions in their tables as well.

10.9.8.6.2 Page Scrolling on Palm® smartphones

Treo 680, Treo 700p,Treo 755p, and Centro smartphones include page scrolling
behaviors that are different from the Treo 650. The main difference is the FIRST page
scroll. The FIRST page scroll behavior (where the page is scrolled completely) is
replaced with a behavior that moves the focus to the bottom item on the page.

Page scrolling behaviors in Treo 680, Treo 700p, Treo 755p, and Centro smartphones
are as follows:

1. When the user quickly presses and releases the Up or Down button, the focus
scrolls a line.

2. When the user presses and holds the Up or Down button, the focus scrolls a page.

3. When the user presses and continues to hold the Up or Down button, the focus
scrolls a page repeatedly.

4. When the user holds the 5-way rocker up or down for 0.5 seconds, the list will
scroll 1 page and focus will be placed on the bottom item on the page (if the user
is scrolling down).

5. When the user holds the 5-way rocker up or down for an additional 0.4 seconds,
the list will start page scrolling every 0.4 seconds. Focus will remain on the
bottom item on the page as paging occurs.

10.9.8.7 Navigation macros
The navigation macros supported on Tungsten and Zire handhelds also work on Treo
650 smartphones and Tungsten T5 handhelds. They continue to be supported to help
minimize the code paths that an application needs to take to run on multiple devices.
The details of these macros are thoroughly documented in the palmOneNavigator.h
header file.

Chapter 10 System Extensions

178 Palm Developer Guide, Palm OS Platform, Rev. J

10.9.9 Tips and troubleshooting

10.9.9.1 Navigation order
■ You must create a navigation resource any time they have a form whose initial

navigation order is not the default navigation order. FrmSetNavOrder() and
FrmSetNavEntry() are not intended to replace the use of navigation resources. A
form that should initially have a custom navigation order should always have a
navigation resource.

Having the navigation information available at the time the system initializes the
form is much cleaner than having the system initialize the form with the default
navigation order and then having the order changed when the application
performs its own form initialization. FrmSetNavOrder() and FrmSetNavEntry()
are mainly for dynamically created forms or forms with navigation orders that
change sometime after form initialization.

■ For forms that are “navigation-aware” (that is., forms that have a navigation
resource and/or call navigation API functions), the vertical navigation order is not
automatically updated as object attributes are changed, as objects are included in
the order, or as objects are excluded from the order.

You may expect that the vertical order will automatically be updated because the
vertical navigation order of forms that are not “navigation-aware” is automatically
updated. However, it is not prudent to automatically determine the navigation
order for all forms. Automatic updating of navigation order is applied only when
necessary—when a form does not know about navigation.

If a form knows about navigation, it is the developer’s responsibility to specify the
proper vertical order through a navigation resource and then update the vertical
order as needed.

■ Developers can enable basic navigation for existing applications by simply
creating navigation resources for the application’s forms and including the
resources into the application’s existing .prc.

■ Pop-up lists do not technically receive the navigation focus. When they are not
popped up, they are not usable and therefore cannot receive the focus. When
they are popped up, the rocker keys have dedicated functionality—regardless of
whether object focus mode is on or which object has focus. Therefore, there is no
need to put pop-up lists in a custom navigation order (although no problems arise
if they are placed in the order).

If a form is using the default navigation order, the pop-up list will be included in
the order but will most likely be marked as skipped (because the list will most
likely not be usable when the form is initialized).

5-Way Navigator and Keyboard API

 Palm Developer Guide, Palm OS Platform, Rev. J 179

10.9.9.2 Focus
■ Although FrmSetFocus() gives the focus to the specified object, it does not redraw

the object. To give focus to a system-supported navigation object (controls, fields,
or lists), an application should call HsNavObjectTakeFocus() on the object.
HsNavObjectTakeFocus() sends a frmObjectFocusTake event for the object and
FrmHandleEvent() processes the event by calling FrmSetFocus() on the object
and redrawing the object.

■ The effects of calling FrmSetFocus() to set the navigation focus will be lost if
FrmSetFocus() is called in response to a frmOpen event. This is because a
frmObjectFocusTake event that sets the form’s initial navigation focus is sent
just after the frmOpen event.

To properly give an object the initial focus, a navigation resource with the object
specified as the initial focus object should be provided.

■ If the object with the navigation focus is hidden, the form will be in a state where
there is no navigation focus. The application is responsible for setting the new
focus after it hides the focused object.

If the application fails to do this and the user presses a directional rocker key when
there is no focus on the form, the focus will be moved to the first object in the tab
order.

10.9.9.3 Focus rings and redraw problems
■ An application may run into redraw problems when it controls the drawing and/

or removal of focus rings (when they directly call HsNavDrawFocusRing() and/or
HsNavRemoveFocusRing()).

Drawing focus rings around an object and properly restoring an object when it
loses the focus ring is very tricky. The rings can be drawn over an object’s frame,
over another object, and over pixels directly drawn to the screen. When the
system draws and removes the ring, it takes these possibilities into account and
also contends with clipping rectangles and objects that change appearance
between receiving and losing the focus ring. The system manages these
complications fairly well when it is controlling the drawing and removal of rings.

For an application to properly handle these complications, developers should
have a basic understanding of the ring drawing and removal mechanism. Before
a ring is drawn, the bits behind the ring are saved. When a ring is removed, the
bits behind the ring are restored, the object is redrawn, and the portion of any
object that was behind the ring is redrawn.

Therefore, it is important that an application always draw an object in its normal
state before drawing a focus ring around it. If the appearance of an object with the
focus ring needs to change (that is, if an object’s bounds needs to change) or if
what’s behind the focus ring needs to change (for example, if the background
color of the form needs to change), an application should remove the ring, make
the changes, draw the changes, and then draw the ring again.

Chapter 10 System Extensions

180 Palm Developer Guide, Palm OS Platform, Rev. J

10.9.9.4 Fields
■ To give a field the insertion point, FldGrabFocus() should be called.

FldGrabFocus() will take care of enabling the insertion point and putting the
field into interaction mode. Similarly, to take the insertion point away from a
field, FldReleaseFocus() should be called. FldReleaseFocus() will take
care of disabling the insertion point and taking the field out of interaction mode.

■ Since navigation causes fields to constantly receive and lose the insertion point,
it is necessary to always set the proper shift state for a field when it receives
the insertion point. The hsNotifySetInitialFldStateEvent notification
accomplishes this task. An application that has a field that should always
have a particular shift state should register for the notification.

When registering, it should pass the field’s form pointer as the user data for the
notification. When it receives the notification, it should compare the active form
pointer with the form pointer passed as the user data. If the pointers match, it
should then call FrmGetFocus() to see which object has the focus. If it is the field
that it wants to set the shift state for, the application should set the shift state and
then mark the notification as handled.

10.10 Handspring® extensions
Available on:
■ Centro™ and Treo™ smartphones

The Palm Treo smartphone was originally designed by Handspring, and Handspring
created extensions to the Palm OS to support Palm smartphones. You can find the
details of the new APIs in the Palm API Guide, Palm OS Platform available at
http://pdn.palm.com.

http://pluggedin.palm.com/

Tips and Tutorials

 Palm Developer Guide, Palm OS Platform, Rev. J 181

10.11 Tips and Tutorials
Available on:
■ Centro™ and Treo™ smartphones

■ LifeDrive™ mobile manager

■ Tungsten™ T5, Tungsten™ E2, and Palm® T|X handhelds

■ Palm® Z22 organizer

A framework for applications to display formatted help content is included in the
Palm OS SDK. This help content serves as an on-device training tool designed to
provide customers with a quick introduction to a device, application, or accessory.

10.11.1 Terminology

10.11.1.1 Tips
Tips are a collection of one-screen HTML pages (Lessons) that provide succinct usage
tips for an application. These Lessons are collected into one Topic.

Tips are accessed from a menu item in the application.

10.11.1.2 Tutorial
A Tutorial is a collection of several Topics.

Tutorials are accessed through an icon in the Applications View instead of directly
from an application. A Tutorial consists of a menu, and a collection of ten or fewer
Topics tied together in a logical manner. For example, the Tutorial that comes
preinstalled on Palm smartphones contains Topics that provide customers with basic
instruction on using their Palm smartphone.

On the Treo 600 smartphone, the Applications icon for the Tutorial is labeled
“Tutorial.” On the Treo 650 smartphone and later, and Centro smartphones, the
Applications icon for the Tutorial is labeled “Quick Tour.”

10.11.1.3 Topic
A Topic is a collection of Lessons on a common theme.

A Tips file generally has one Topic, while a Tutorial file usually contains multiple
topics. Tutorial files generally have a menu page that lets the user select which Topic
they want to see. For example, the first Topic in the Tutorial that comes preinstalled
on the Palm smartphone, “Getting Started,” covers basic familiarity with the Palm
smartphone buttons and behavior. When you build an XML file, a Topic is defined by
Sequence tags.

10.11.1.4 Lesson
A Lesson, sometimes referred to as a page, is a single screen within a Topic.
It consists of text, images, or both. A single idea is usually conveyed by one Lesson,
but more complex ideas may require multiple Lessons.

Chapter 10 System Extensions

182 Palm Developer Guide, Palm OS Platform, Rev. J

10.11.2 Content

10.11.2.1 Topic titles
Topic titles should fit on a single line—generally, 25 characters or less—and should
clearly describe the logical connection between enclosed Lessons. Standard title
capitalization rules should be used. When creating a Tips file, the Topic title should
be the name of the application the Tips are about.

10.11.2.2 Lesson text
Most Lessons contain text. Standard manual writing guidelines should be used
when writing text. Text should be limited to no more than 30 words per Lesson.

10.11.2.3 Lesson images
Whenever possible, images should be used to ground the text with specific examples
of the device, application, or accessory in action. See the image creation guidelines
for more information.

10.11.3 Tips and Tutorial structure
Before being converted into a Palm OS® PRC file, Tutorials and Tips are collections
of HTML files and images organized in a directory. Components include:

■ A folder to contain the complete contents of the Tips or Tutorial. This folder is
referred to as the root content folder.

■ A menu page that lists all the available topics. This menu page is contained in an
HTML document that is usually named index.html. Tips files that contain only one
topic do not need a menu page.

■ An HTML page for each Lesson in each Topic:

– If the HTML page references external content such as images or JavaScript,
they must also be present within the root content folder, unless the external
content is already in the device’s ROM.

– References to external content must be relative to the root content folder, not
to any subfolders within the content. For this reason, it’s frequently easiest to
put all the content files into one folder and reference files by file name only.

– HTML pages may also reference the shared content library in the device’s ROM.
See the shared content description document for more information.

– A style sheet and JavaScript library that provide the standard Palm Tips and
Tutorial styles and formatting are included in the shared content library in the
device’s ROM. We strongly recommend that all Tips and Tutorial content use
these files. See the shared content description document for more information.

■ An XML document, usually named tips.xml, that defines the elements and
structure of the Tutorial or Tips.

10.11.3.1 Menu document
Tutorials have a menu document written in HTML (usually called index.html) that lets
users select a topic to view. Tips files normally contain only one topic, so they do not
have menu documents. The menu document contains the following elements.

10.11.3.1.1 Head
<html>
<head>

Tips and Tutorials

 Palm Developer Guide, Palm OS Platform, Rev. J 183

<meta name="HandheldFriendly" content="True">
<title>Tutorial Main Menu</title>

<link rel="stylesheet" href="common/inc/style.css" type="text/css"
title="test_style">

<script language="javascript" src="common/inc/tutorial.js"></script>
</head>

Where:

■ <meta name="HandheldFriendly" content="True"> prevents the rendering
engine from transforming the content.

■ <title>Tutorial Main Menu</title> is customizable.

The content within the title tags should reflect the title of the Tutorial.

■ <link rel...> and <script language...> tell the document which style sheet
and JavaScript source file to use.

These should refer to the shared style sheet and JavaScript files in the shared
content library in the device’s ROM as shown earlier.

10.11.3.1.2 Body
<body onLoad="setPage('menu','');">

Where:

■ setPage is a JavaScript routine that performs cookie actions appropriate to the
type of page.

– The first parameter defines what actions should be taken. The first parameter
for a menu page should always be titled “menu.”

– On a menu page, the second parameter should be empty.

10.11.3.1.3 Icon
<!-- icon -->
<div id="icon">

Where:

■ <div id="icon"> positions the icon.

■ points to the menu icon in the shared
content library in the device’s ROM. All menus should use this icon.

Chapter 10 System Extensions

184 Palm Developer Guide, Palm OS Platform, Rev. J

10.11.3.1.4 Header and Content
<!-- header -->
<div id="menu_frame">

<p class="title">Tutorial Main Menu</p>

<!-- content -->

<img src="common/img/bullet_empty.gif"
name="hsgs" width="16" height="8" border="0">Getting Started

<img src="common/img/bullet_empty.gif"
name="hskb" width="16" height="8" border="0">Keyboard Basics

<img src="common/img/bullet_empty.gif"
name="hstt" width="16" height="8" border="0">Top 10 Fun Features

<img src="common/img/bullet_empty.gif"
name="hsup" width="16" height="8" border="0">Upgrading From a Palm OS Device

Where:

■ <div id="menu_frame"> defines the position and background image for the menu
frame. This should not be changed.

■ <p class="title">Tutorial Main Menu</p> defines the color and position of the
title that will appear on the Tutorial menu page. Replace “Tutorial Main Menu”
with the title of your Tutorial. When testing your Tutorial, make sure your title fits
in the allotted space.

■ Each Topic that is to appear in your menu should be coded as follows:
<img src="common/img/

bullet_empty.gif" id="ft01" width="16" height="8" border="0">Getting

Started

– Replace get_start_1.html with the name of the HTML document that defines
the first Lesson in the Topic.

– Replace hsgs with a code uniquely identifying the Topic. This code is used on
the last Lesson of a Topic, so make a note of it for future reference. This is used
to update the bullet to a checkmark once the Topic is completed by the user. See
the built-in Quick Tour for an example of this behavior.

– Replace Getting Started with the name of the Topic.

10.11.3.1.5 Footer
<!-- footer -->
Scroll Up or Down and press Center to select a topic
</body>

This footer text should appear at the bottom of every menu. Do not change this
section.

10.11.3.2 Lesson document
To make it easier to understand the structure, Lesson documents should be given a
consistent naming structure. For example, the Lessons in the “Getting Started” Topic
are named get_start_1.html, get_start_2.html, get_start_3.html and so on.

Tips and Tutorials

 Palm Developer Guide, Palm OS Platform, Rev. J 185

10.11.3.2.1 Head
<html>
<head>
<meta name="HandheldFriendly" content="True">

<title>Getting Started</title>
<link rel="stylesheet" href="common/inc/style.css" type="text/css"
title="test_style">
<script language="javascript" src="common/inc/tutorial.js"></script>’

Where:

■ <meta name="HandheldFriendly" content="True"> prevents the rendering
engine from transforming the content.

■ <title>Getting Started</title> is customizable.

The content within the title tags should reflect the title of this Topic. All Lessons
in the same Topic should use the same title. Tips files should use the name of
the application that the Tips are about as the title of all Lesson documents.

■ <link rel...> and <script language...> tell the document which style sheet
and JavaScript source file to use.

These should refer to the shared style sheet and JavaScript files in the shared
content library in the device’s ROM as shown in the example. The <script
language...> tags are necessary only on the last Lesson of a Topic.

10.11.3.2.2 Body
<body onLoad="setPage('end','hsgs');">

Where:

■ The last Lesson of a Tutorial Topic should have a body tag like the one shown
in the example.

■ setPage is a JavaScript routine that performs cookie actions appropriate to the
type of page.

– The first parameter defines what actions should be taken. If this is the last
Lesson in the Topic, the first parameter should be set to end.

– The second parameter should be the same as the code used to uniquely
identify this Topic on the menu page.

– This is used to update the bullet to a checkmark once the Topic is completed
by the user. See the built-in Quick Tour for an example of this behavior.

■ All other Lessons should have a regular <body> tag.

10.11.3.2.3 Icon
<!-- icon -->
<div id="icon">

<div id="icon"> positions the icon.

 points to the icon used for this Topic.
Replace common/img/icon_gs.gif with the path to your icon image relative to the
root folder. All Lessons in the same Topic should use the same image. See the
attached image guidelines for more information.

Chapter 10 System Extensions

186 Palm Developer Guide, Palm OS Platform, Rev. J

10.11.3.2.4 Header and Content
<!-- header -->

<p class="title">Getting Started</p>

<!-- content -->

<P>
Congratulations on your purchase!
</P>

<P>
The following tips will help you get started.
</P>

<img src="common/img/key_fiveway.gif" width="51" height="34" class="cap_none" border="0"
style="margin: 26 5 0 5">

<P>
Press the Center navigation button to go to the next page.
</P>

<!-- arrows and text -->
<img src="common/img/arrow_down_long.gif" width="8" height="30" border="0"
style="position:absolute; top:83; left:126;">
</div>

</body>
Where:

■ <div id="content_frame"> defines the position and area in which the content will
appear. This should not be changed.

■ <p class="title">Getting Started</p> defines the title for the Topic that will
appear at the top of the screen. Replace “Getting Started” with your Topic title.
The same title should be used for all Lessons in this Topic. Tips files should use
the name of the application that the Tips are about as the title of all Lesson
documents.

■ All content should appear between <!-- content --> <img src="common/img/
spacer.gif" height="5" width="125" border="0">
 and </div>.

10.11.3.2.5 Lesson Content Formatting

There are several alternate ways of presenting content. In general, any Lesson may
consist of the following:

■ Text that flows vertically and horizontally in the main content frame

■ Images that flow vertically within the main content frame and float right

■ Images that flow vertically within the main content frame and float left

■ Images that flow vertically within the main content frame and are centered

■ Text or images that are removed from the flow of the main content frame and
are absolutely positioned

Tips and Tutorials

 Palm Developer Guide, Palm OS Platform, Rev. J 187

■ Text that appears in a graphic box on top of another image, otherwise known
as a “callout.”

In this example, all text but the word “Next” flows vertically and horizontally in
the main content frame. The image of the navigation button flows vertically within
the main content frame and floats right. The word “Next” and the arrow pointing
to the center button are removed from the flow of the main content frame and are
absolutely positioned. The HTML that defines this content is as follows:

<!-- content -->

<p>
Congratulations on your purchase! The following tips will help you get started.
</p>

img src="img/fiveway.gif" width="51" height="34" class="capp_top" borders="0">

<p>
To go to the next page, press the center navigation button.
</p>

<!-- arrows and text -->
<img src="img/arrow_down_long.gif" width="8" height="30" border="0"
style="position:absolute; top:63; left:125;">
Next

Where:

■ The text that will appear within the main flow of the content frame must be set off
with paragraph tags (<p> and </p>).

■ Because HTML aligns paragraphs and images at the top of their respective blocks,
 appears after the first paragraph to align with
the top of the second paragraph. The path to the image file, as always, is defined
from the root folder.

■ <img...class="cap_top"> defines the margins, which are extended—in this case
on top—to make room for a caption. The following are predefined classes and
their margins. If you need larger margins, you will need to define them within the
img tag using the style attribute.

– cap_none: top:5; right:5; bottom:0; left:5; float: right

– cap_top: top:30; right:5; bottom:0; left:5; float: right

– cap_left: top:5; right:5; bottom:0; left:30; float: right

Chapter 10 System Extensions

188 Palm Developer Guide, Palm OS Platform, Rev. J

■ defines the path from the root folder
to the arrow image. You’ll find predefined arrows in the attached template
documentation; use those as a template if you create your own. Within the img tag
is the style attribute: <img...style="position:absolute; top:52; left:126;">.
Use this syntax to place elements exactly, always defining distance from the top-
left corner at 0,0 pixels.

■ is used to absolutely
position text. Always define distance from the top-left corner at 0,0 pixels.

This is an example of a callout. The following code generates the callout:

<table border="0" width="80" cellspacing="0" cellpadding="0" align="left" >

<tr>
<td></td>
<td></td>
<td></td>

</tr>
<tr bgcolor="#CCFFCC">

<td></td>
<td>When on a call, press Center to Hang Up, or Right to choose another option.</

td>
<td></td>

</tr>
<tr>

<td></td>
<td></td>
<td></td>

</tr>
</table>

Where:

■ and
absolutely positions the entire callout on the screen.

Always measure to the top and left of the block being positioned from the top- left
corner of the screen at 0,0 pixels.

■ <table border="0" width="80" cellspacing="0" cellpadding="0"

align="left"> starts the table that will draw the callout.

The width can be adjusted to accommodate content, but should be no wider than
90 pixels.

Tips and Tutorials

 Palm Developer Guide, Palm OS Platform, Rev. J 189

■ In the first row, <td><img src="common/img/pull_tl.gif" width="6" height="7"
border="0"></td> defines the image of the top-left corner of the callout, <td><img
src="common/img/pull_t.gif" width="68" height="7" border="0"></td>
defines the image for the top bar of the callout, and <td><img src=" common/img/
pull_tr.gif" width="6" height="7" border="0"> defines the image for the
top-right corner of the callout in the shared content library in the device’s ROM.

Always use these graphics when creating a callout. Adjust the width of
pull_t.gif so that the width of all three images equals the width of the table.

■ In the second row, <tr bgcolor="#CCFFCC"> defines the background color of
the callout.

Always use #CCFFCC for the callout background color. <td><img src=" common/
img/pull_l.gif" width="6" height="45" border="0" ></td> defines the left-
side vertical bar of the callout, and <td><img src=" common/img/pull_r.gif"
width="6" height="45" border="0" ></td> defines the right-side vertical bar of
the callout in the shared content library in the device’s ROM. The height of these
two elements should be the same, and should be adjusted to encompass all of the
text in the second cell: <td>You’ll see the number as you dial at the top of
the screen.</td>.

■ In the third row, <td><img src=" common/img/pull_bl.gif" width="6"
height="7" border="0"></td> defines the image of the bottom-left corner of
the callout, <td><img src=" common/img/pull_b.gif" width="68" height="7"
border="0"></td> defines the image for the bottom bar of the callout, and
<td>
defines the image for the bottom-right corner of the callout in the shared content
library in the device’s ROM.

Always use these graphics when creating a callout. Adjust the width of
pull_b.gif so that the width of all three equals the width of the table.

Some content may be in the form of bulleted lists. Because HTML doesn’t support
indented lists, use the following code to align numbered lists:

<p class="hanging_indent">
1. Press
</p>

<p class="handing_indent">
2.Dial numbers directly from the keyboard dialpad.
</p>

<p class="hanging_indent">
3. Press Center to place the call.

Where:

■ Each list item should be enclosed in a <p class="hanging_indent"> and </p> tag.

■ Each step is numbered individually.

Chapter 10 System Extensions

190 Palm Developer Guide, Palm OS Platform, Rev. J

10.11.3.3 XML document
An XML document, usually named tips.xml, catalogs the elements and structure of
the Tutorial. It tells the PRC file creation utilities which content should be added into
the Tips or Tutorial PRC file. It also defines the ordering of the lessons and
the structure of the topics. It is an XML-formatted file that is processed by
createTipsRsc.exe to create a standard Palm OS XRD resource file. For information
about this process or clarifications about tips.xml syntax, examine the source code
for createTipsRsc.exe.

All XML tags and tag attributes are case sensitive. Filenames in the tips.xml file as
well as within the HTML content are case sensitive. To make things simpler and
easier, all file names within the tips.xml file and within all tags in the content should
be in lowercase letters.

The header of the XML document is formatted as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Tutorial Name="Device_Tutorial " Base="Tutorial_Tips" Description="Device
Tutorial">

Where:

■ <?xml version="1.0" encoding="UTF-8"?> defines the document type.
This should not be changed.

■ <Tutorial Name="Device_Tutorial" Base="Tutorial_Tips"

Description="Device Tutorial"> needs to be edited.

Replace Device_Tutorial in both the Name and Base attributes with the name
of the PRC database that will be created by the Tips and Tutorial creation utilities.
Replace Device Tutorial with the human-readable name of the Tutorial file you
want to create when the XML document is compiled.

<Page Base="1" Default="1" File="index.html"/>

■ Tutorials may contain pages that are not part of a Topic, such as the main menu
page. The syntax shown demonstrates how this is accomplished:

– Base="1" tells the creation utilities that this is a page that is shown directly and
may load other content, as opposed to included pages such as images or style
sheets.

– Default="1" tells the creation utilities that this is the page that should be
displayed when this Tutorial is first opened. Only one page in a tips.xml file
should have the Default attribute set.

Tips and Tutorials

 Palm Developer Guide, Palm OS Platform, Rev. J 191

■ Because the content in a Tips file is usually all in one Topic, Tips files usually
do not have this form of the Page tag in their tips.xml files.

– In a Tips file, the first page of the Topic should be flagged Default="1"

<Sequence Menu="index.html">
<Page File="get_start_1.html"/>
<Page File="get_start_2.html"/>
<Page File="get_start_3.html"/>
<Page File="get_start_5.html"/>
<Page File="get_start_6.html"/>
<Page File="get_start_7.html"/>
<Page File="get_start_8.html"/>
<Page File="get_start_9.html"/>
<Page File="get_start_10.html"/>
<Page File="get_start_11.html"/>
<Page File="get_start_12.html"/>
<Page File="get_start_13.html"/>

</Sequence>

■ The sequence tag defines one topic. Because a Tips file usually contains one
Topic, it will usually contain one pair of Sequence tags. Tutorials usually contain
multiple Topics, so they will usually contain multiple pairs of Sequence tags.

■ For a Tutorial, the sequence tag looks like this: <Sequence Menu="index.html">.
The Menu attribute tells the system where to navigate when the Menu button is
tapped. If you’ve named the menu page something other than index.html, you will
need to change it here.

■ For a Tips file, the sequence tag looks like this: <Sequence Done="1">. The Done
attribute tells the system to show a Done button instead of a Menu button. The
Done button, when clicked, exits Tips and returns the user to the calling
application.

■ <Page File="get_start_1.html"/> tells the creation utilities what HTML pages
contain the Lessons for this Topic. Order is important in this section; the Lessons
will be shown in the same order in which the Page tags appear within the
Sequence tag.

<Page File="inc\style.css"/>
<Page File="inc\tutorial.js"/>
<Page File="inc\active_call.gif"/>

■ All other files used by the Tutorial or Tips file—other than shared content already
in the device’s ROM—need to be defined here using the relative path from the root
folder. For instance, all images used by the Lesson pages must be included here.
Order is not important in this section.

Chapter 10 System Extensions

192 Palm Developer Guide, Palm OS Platform, Rev. J

10.11.4 Converting Tips and Tutorial content in a PRC file

10.11.4.1 What you need
Use the provided utilities and guidelines to create Tips and Tutorials. The utilities
are provided in the Palm OS® SDK under TipsTutorialsUtil.zip. The contents of the
TipsTutorialsUtil.zip file are as follows:

■ Content developed using the guidelines in this chapter.

■ The tips.xml file that defines the content in the shared content library in the
device’s ROM. This file should be copied into the root content folder.

■ The createTipsRsc.exe program. The Perl source code for this program is also
included for your reference.

■ The Palm-BinTool.exe program.

■ The PalmRC.exe program.

■ A creator ID for the resulting PRC file. We highly recommend that the Tips and
Tutorial PRC file have a different creator ID from that of the main application.
This is the same type of creator ID as a standard Palm OS application and can
be obtained from the ACCESS (formerly PalmSource) Developer Network website
at http://www.access-company.com/developers/.

10.11.4.2 Converting content into an XRD resource file
To convert the content into a Palm XRD file, open a command prompt and change
directory (cd) to the directory with the tips.xml file. (The tips.xml file is described
in the guidelines.) Then run createTipsRsc. The syntax for the createTipsRsc
command is as follows:

createTipsRsc -i tips.xml -o tips.xrd -c CREATORID -s
shared_content.xml -p c:\bin\palm-bintool.exe -f

Where:

■ -i specifies the input XML file.

■ -o specifies the output XRD file.

■ -c specifies the creator ID for the final PRC file. CREATORID is a filler. You should
obtain an authentic one from ACCESS.

■ -s specifies the XML file that describes the shared content library in the
devices ROM.

■ -p specifies the full path to the palm-bintool.exe file.

■ -f is an optional flag that sets the backup flag on the final PRC file. This tells
the HotSync operation to back up this file and to restore it automatically after
a hard reset.

■ -l is an optional flag that sets the current locale. For instance, esES.

10.11.4.3 Converting a Palm XRD resource file into a PRC
To convert the XRD file into a PRC, run PalmRC with the following syntax:

PalmRC.exe tips.xrd -p ARM -overlayFilter BASE -target 4.0 -o tips.prc

Where:

■ tips.xrd is the name of the input XRD file.

■ tips.prc is the name of the output PRC file.

Do not modify any of the other command-line parameters. The resulting PRC file can
then be placed onto the device through a normal HotSync operation.

http://www.access-company.com/developers/
http://www.access-company.com/developers/

Tips and Tutorials

 Palm Developer Guide, Palm OS Platform, Rev. J 193

10.11.5 Displaying Tips and Tutorial content
Use the methods described in this section to display Tips and Tutorial content.

10.11.5.1 Displaying application tips
To display tips within an application, launch the Blazer® web browser in Tutorial
mode. The command block should be a pointer to a null-terminated string that is the
name of the PRC database containing the application tips to be displayed. After the
browser exits, the calling application is relaunched automatically.

#define myappTipsDbName "MyApp_Tips"
#define myappTipsDbNameLength 10

void DisplayTips() {
Char* startPage;
startPage = MemPtrNew(myappTipsDbNameLength + 1);
MemPtrSetOwner(startPage, 0);
StrCopy(startPage, myappTipsDbName);
AppLaunchWithCommand(hsFileCBlazer3,

sysAppLaunchWebBrowserTutorialMode, startPage);
}

10.11.5.2 Displaying a Tutorial
There is little programmatic difference between displaying Tips and displaying
a Tutorial. Tips are displayed by launching the Blazer® web browser in Tutorial
mode from within an application, whereas a Tutorial is displayed by launching
the Blazer web browser in Tutorial mode from a stub application that appears in
the Applications View. This stub application has two functions:

■ Provide a user-visible entry point into the Tutorial by displaying an icon in
the Applications View.

■ Launch the Blazer web browser in Tutorial mode with the command block pointing
to a null-terminated string that is the name of the PRC database that contains the
Tutorial to be displayed.

The following is an example of a stub application:

#define Tutorial_Start_Page "Tutorial_Tips"
#define Tutorial_Start_Page_Length 13

UInt32 PilotMain(UInt16 cmd, MemPtr cmdPBP, UInt16 launchFlags)
{
 if (cmd == sysAppLaunchCmdNormalLaunch) {
 Char* startPage;
 startPage = MemPtrNew(Tutorial_Start_Page_Length + 1);
 StrCopy(startPage, Tutorial_Start_Page);
 MemPtrSetOwner(startPage, 0);

 AppLaunchWithCommand(hsFileCBlazer3,
sysAppLaunchWebBrowserTutorialMode, startPage);
 }

 return 0;
}

Chapter 10 System Extensions

194 Palm Developer Guide, Palm OS Platform, Rev. J

10.11.6 Graphic element design guidelines
This section details the graphic element design guidelines.

10.11.6.1 Tutorial main menu
The Tutorial main menu is as follows:

5p 16p 125p

13p

31p

Icons for upper right corners: Each icon used per chapter should be
drawn in Photoshop at 30/60 degree increments using 2x1 stepping.
Each icon should face left and have a cast shadow to the right.

Indicates
clear space

Gray 1-pixel border
represents nonactive

outer white pixel

Topic icon sits in upper
right corner; (space is 35p
x 42p) do not allow text to
overlap icon (clear space)

Title bar headers
and check circles

are flush left

Menu
topics are
flush left

This page intentionally blank

Tips and Tutorials

 Palm Developer Guide, Palm OS Platform, Rev. J 195

10.11.6.2 Tutorial content pages

Content Page: large graphic & pull quotes
Full screens should be approximately 70% and placed on the left
side of the screen. Pull quotes should be placed to the right as
shown, with arrow pointing to area that text is referencing. Use
arrows (and circles) that exist in the template or request a set
from Palm.

Same clear space
(32p x 42p) applies
on content pages

Same clear space
(35p x 42p) applies
on content pages

Content Page: graphic (tall) & text
All graphics, except when they completely fill the screen, should
be placed in the lower right corner. Use arrows with or without
text to point out information and circles to call out specific
details. Small graphics should be enlarged so that they are clear.

Content Page: graphic (wide) & text
All graphics, except when they completely fill the screen, should
be placed in the lower right corner. Crop the images so that they
are recognizable.

Content Page: Text only
Clear space for the icon still applies. For “scroll up or down” use
the same format from the Main Menu.

Content Page: graphic (centered) & text
Certain graphics will look better when centered. This is the
exception, not the rule. Note that elements such as buttons or
keys from the device should be cropped as shown above.

Graphics: All icons used in the upper right corner should be drawn in Photoshop. All other placed images, such as screen shots or
device images, must be taken from the original source files and reduced to fit into the space allowed per page. All images should
be saved out of Photoshop using “save for web” at actual size in either JPEG or GIF format, whichever is smaller. For JPEG, quality
setting should be 20 or 30, depending on the image, with 0 blur. For GIF, preferences should be set to GIF 32 No Dither.

All device images are the property of Palm, and may be used with permission.

All button or key
graphics should
appear as shown in
this screen.

Do not crop
buttons like this:

Chapter 10 System Extensions

196 Palm Developer Guide, Palm OS Platform, Rev. J

10.11.6.3 Images that are in the shared content library in the
device’s ROM
The images available directly from the device’s ROM for your own Tips and Tutorials
can be found in the utility section of the Palm OS SDK available at
pluggedin.palm.com.

10.12 Full-Screen Writing API
Available on:
■ LifeDrive™ mobile manager

■ Tungsten™ T5, Tungsten™ E2, and Palm® T|X handhelds

■ Zire™ 31, Zire™ 72, and Palm® Z22 organizers

This section contains reference information for the full-screen writing feature that is
provided programmatically through the GoLCD (Graffiti® 2 writing on LCD) Manager
API. You can use the functions in this API to enable or disable full-screen writing,
enable and disable the Graffiti 2 shift indicator (GSI) as a control for full-screen
writing, enable and disable Graffiti 2 inking, and even change the colors of Graffiti 2
inking and the GSI.

The GoLCD API is declared in the header file PalmGoLCD.h.

Full-screen writing allows users to enter Graffiti 2 characters in the application area
of a handheld’s display as well as in the Graffiti 2 writing area.

By setting Graffiti 2 Preferences, users can enable full-screen writing and choose
whether to show, or ink, the Graffiti 2 strokes in the application area.

In each application the availability of full-screen writing is indicated by a shaded,
rectangular Graffiti 2 shift indicator (GSI) in the lower-right corner of the display.
The user can tap the GSI to turn full-screen writing off and on. The GSI appears as
an outline when full-screen writing is off, and as a solid rectangle when it is on.
In addition, the shift indicator, punctuation-mode indicator, and shift-lock indicator
appear superimposed on the shaded rectangle when the user draws the appropriate
Graffiti 2 strokes to activate those modes.

Graffiti 2 strokes in the application area are distinguished from taps on application
controls, depending on the duration and direction of tap-and-hold events. GoLCD
interprets pen events in the writing bounds of the application area, which you can
set using GoLCDSetBounds. If the pen is held down for a certain length of time and
travels significantly across the screen in the writing bounds area, GoLCD enters
goLcdGraffitiMode and interprets all pen events as Graffiti 2 strokes. GoLCD exits
goLcdGraffitiMode and stops interpreting pen events as Graffiti 2 strokes when
the pen is lifted from the screen for a certain amount of time. For more information,
see the Palm API Guide, Palm OS Platform.

This page intentionally blank

http://pluggedin.palm.com/

Dynamic Input Area (DIA)

 Palm Developer Guide, Palm OS Platform, Rev. J 197

10.13 Dynamic Input Area (DIA)
Available on:
■ Tungsten™ T3 and Tungsten™ T5

Dynamic Input Area (DIA) aware applications that worked on Tungsten T3 handhelds
may behave differently on Tungsten T5 or later handhelds. This section explains the
DIA-related differences between Tungsten T5 and Tungsten T3 handhelds.

The ACCESS® (formerly PalmSource) DIA and the Palm Active Input Area (AIA) were
initiated independently at around the same time to achieve similar goals, providing
a status bar and a dynamic replacement for the silk-screened Graffiti input area. The
AIA ran atop Palm OS 5.2, while the DIA originally targeted Palm OS 6. Early in the
course of their development, many of the public APIs were unified with the goal of
easing the transition to Palm OS 6.

As shown in the figure, when the initial delivery of the ACCESS DIA was accelerated
to appear with Palm OS 5.3, Palm created a compatibility layer to mimic the behavior
of the DIA APIs from Palm OS software 5.3, while running atop the Palm AIA on Palm
OS software 5.2. The goal was, and continues to be, to provide support for the
ACCESS APIs, regardless of the implementation underneath.

The most significant difference between the AIA and DIA models is in the scope of
“tall screen awareness”—the AIA model is application-centric, using a “Smrt”
resource to flag an entire application as “tall-screen–aware,” and the DIA model is
form-centric, using an API call during the setup of a form to flag that form as “tall-
screen–aware.” Newer applications from Palm are written to use the DIA model, but
legacy code still exists, using the AIA model.

Tungsten T5 handhelds using Palm OS 5.4 software include DIA support in the OS, so
the problem shifted from providing forward compatibility—handhelds adding a
pseudo-DIA interface to Palm OS 5.2 software—to providing backward compatibility
for our legacy code. As you might imagine, this is not a simple feat; it’s somewhat like
having a car with two steering wheels. There’s only one input area, but two
concurrent models for controlling it.

T ungs ten T 3 T ungs ten T 5

'S m rt' In te rface
(pa lm O ne)

pseudo D ynam ic Inpu t
A rea In te rface (pa lm O ne)

A c tive Inpu t A rea E ng ine (pa lm O ne)

'S m rt' In te rface
(pa lm O ne)

D ynam ic Inpu t A rea
In te rface (P a lm S ource)

A c tive Inpu t A rea E ng ine (pa lm O ne)

D ynam ic Inpu t A rea E ng ine
(P a lm S ource)

O verv iew o f the Inpu t A rea S ys tem on T ungs ten T 3 and T 5

Chapter 10 System Extensions

198 Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

 Palm Developer Guide, Palm OS Platform, Rev. J 199

CHAPTER 11

11. Applications

This chapter details the features and APIs available in some of the Palm®

applications.

11.1 Web Browser API
This section describes the various technical features of the Palm web browser system
that allow website designers and programmers to deliver a better web experience.

Available on:
■ Centro™ and Treo™ smartphones

■ Tungsten™ T5, Tungsten™ E2, and Palm® T|X handhelds

■ LifeDrive™ mobile manager

The Palm Blazer® web browser is an application designed for devices that use
Palm OS®. It can access multiple Internet content formats, including HTML, xHTML,
cHTML, and WML. With the web browser, a user can download web pages from the
Internet and view them on the compact device screen. The key features of the web
browser are as follows:

■ An intuitive graphical interface

■ Support for multiple markup languages

■ Support for secure websites

■ Choice of display modes:

– Optimized mode for optimization of content for Palm OS devices

– Wide Page mode for the display of content similar to that of a desktop browser

– Normal or fast mode for page rendering

■ 5-way navigator support

■ A variety of UI features including History, Saved Pages, and Beaming Bookmarks

■ Ability to download applications, ring tones, images, and more

■ Support for streaming content in Blazer 4.5

Chapter 11 Applications

200 Palm Developer Guide, Palm OS Platform, Rev. J

11.1.1 How the web browser works
Versions of the web browser before Blazer version 3.0 were built as a proxy solution.
The proxy server adapted pages from the remote web servers and streamed content
to the client. The client application received the content from the proxy server and
displayed the web page on the device’s screen. Since Blazer 3.0 however, the Palm
web browser is a proxyless, client-only browser. (It is capable of using a standard
HTTP proxy in the same way a desktop browser would use a proxy.)

There are several reasons why this architecture was chosen. For one, having a client-
only solution allows devices to access more wireless service provider services, such
as downloads and mobile content. Also, device processing power has reached the
point where the content optimizations can be accomplished efficiently enough on the
client.

The figure below shows how the current proxy-less web browser accesses web
pages.

The Blazer web browser uses the Palm OS Network Library for Bluetooth® wireless
technology, WiFi, and the Palm NetMaster Library for GSM/CDMA to make the
connection to the wireless service provider infrastructure.

Web Browser API

 Palm Developer Guide, Palm OS Platform, Rev. J 201

11.1.2 Web browser feature overview
This section covers the features of the web browser. This information is useful for
understanding the software requirements, technical features, and user interface
elements.

11.1.2.1 Protocol stack support
The web browser uses the internet standard HTTP stack for communications. While
the browser does support WML, there is no support for the WAP 1.x protocol stack.

11.1.2.2 Overview of key web browser features
The web browser incorporates a number of key technical features described in
this section.

11.1.2.2.1 Intuitive graphical interface

The web browser’s user interface takes advantage of the device’s screen size. The
web browser provides one-touch access to bookmarks, navigation, the home page,
and new web pages. It also gives users a familiar look and feel comparable to that of
a desktop browser.

11.1.2.2.2 Support for multiple markup languages

The web browser supports several markup languages, as well as cascading style
sheets and JavaScript. This allows users to access a wide variety of web and wireless
content from a single browser and gives content providers flexibility in determining
what type of markup language to use. The Palm web browser supports the following
markup languages:

For special tags that the browser supports, see Section 14.1.9 on page 277.

Markup Language

HTML 4.01

XHTML 1.1

XHTML Mobile Profile

cHTML (iHTML)

WML 1.3

DHTML

DOM

Chapter 11 Applications

202 Palm Developer Guide, Palm OS Platform, Rev. J

11.1.2.2.3 Support for secure websites

The web browser supports the following security features:

■ End-to-end security using SSL 3.0

■ 128-bit encryption using the RC-4 algorithm

■ RSA-based key exchange

■ RSA-based digital signature verification for verifying the authenticity of
signed certificates, signed code, and so forth.

■ MD5 and SHA-1 secure hash algorithms

■ SSL 3.0 with server-side authentication only

■ Support for X.509 certificates

■ Indication of a secure connection by a lock icon in the toolbar or URL bar.

11.1.2.2.4 Optimization of content for device screens

The web browser optimizes the content to take advantage of device characteristics
such as screen size and navigation.

11.1.2.2.5 Normal or fast mode for rendering pages

Blazer v. 4.3 and later allows a user to choose how they want their pages to be
rendered: normal or fast. Normal mode renders a page the same way that previous
versions rendered pages. Fast mode is by default rendering with no cascading style
sheets and no images. While in fast mode, users can still download individual images
by tapping an image and holding it for longer than one second.

Users can set preferences for what fast rendering does on their device. In addition,
there is a normal/fast mode quick switch (the icon looks like a lightning bolt) available
on the Blazer main form page, where the optimized/wide page quick switch used to
be. The optimized/wide page mode setting is now only in the Blazer “options” menu.

Select mode Set preferences

Web Browser API

 Palm Developer Guide, Palm OS Platform, Rev. J 203

11.1.3 Download manager
The web browser incorporates download management technology that allows users
to download files over a wireless network. There are a variety of applications for this
technology:

■ Posting applications, ring tones, images, and so forth for your users to download

■ Incorporating mechanisms in your application to either auto-check for updates
and download them, or allow the user to manually download updates

11.1.3.1 Content support in Blazer® 3.0 and Blazer® 4.0
When a user attempts to download a file, the download manager first checks with
the Exchange Manager to see if a content handler has registered for that type of file.
If a content handler is registered, then the download proceeds. If no content handler
registered is, different versions of Blazer behave differently.

■ Blazer 3.0 notifies the user that they must first install a content handler for that file
type before they will be able to download the file.

■ Blazer 4.0 allows all non-DRM-protected content to be saved to an expansion card,
if one is present, even if there is no Exchange Manager handler for that content
type.

■ For Blazer 4.5, see Section 11.1.3.2 on page 204.

For example, if the user tries to download a MIDI ring tone, because there is an
application in the device’s ROM that handles MIDI, the download proceeds. However,
if the user attempts to download an Adobe® Acrobat® file, unless they have an
application installed on their device that handles Acrobat files and that has registered
with the Exchange Manager as a handler for Acrobat files, the user is not allowed
to proceed with the download unless the user is running Blazer 4.0 and has an
expansion card inserted in their device. If the user is running Blazer 4.0 and has
an expansion card inserted in their device, the user could download the Acrobat
file directly to the expansion card. For devices with an internal drive (for example,
Tungsten T5 handhelds and LifeDrive mobile managers), in the absence of an
expansion card, the file is downloaded directly to the internal volume.

In order to avoid memory problems, Blazer 4.0 limits the size of downloaded files to
2MB. If a user tries to download a bigger file, an error message is displayed. This
restriction has been removed for devices with Blazer 4.1. and later (currently only
LifeDrive mobile managers). Without this restriction, if the file is less than 2MB and
the device has sufficient memory in the DBCache, the file is downloaded through the
Exchange Manager. If the file is larger than 2MB or there isn’t enough space in the
DBCache, users will see a dialog informing them that the file will be downloaded to
the internal drive via VFS Manager.

For your convenience, Blazer 4.0 lists every type currently registered in the Exchange
Manager in the HTTP Accept header.

Chapter 11 Applications

204 Palm Developer Guide, Palm OS Platform, Rev. J

11.1.3.2 Content Support in Blazer® 4.5

11.1.3.2.1 Caching rules

Blazer 4.5 includes some rules for caching. Specifically:

1. Any web page that exists in Blazer history will be read from cache at first, and
Blazer will not access the network unless it does not have a cache entry for that
page. Only if there is no cache entry for a page will Blazer access the network.

2. The no-cache message is ignored. No-store and SSL caching rules are respected.

11.1.3.2.2 Streaming content

Blazer 4.5 has added support for streaming content. The web browser can stream
content in two ways:

1. It can search the web page for an embedded object. If it finds an <EMBED> or
<OBJECT> tag on the page with a MIME-type that an application is registered for,
then Blazer will display a Play button. Links are then passed to the streaming
application via the exchange manager when a user clicks those links.

2. Streaming content may also be presented as a direct link. If an application
registered for streaming that type of content, the user will be presented with a
dialog box that allows the user to choose whether to play the content, save it to
the device, or save it to the card.

11.1.3.2.3 Link protocol types

You can use the RTSP or HTTP URL scheme in an application to link to streaming
content:

■ RTSP - Using RTSP links, an application will redirect the user immediately to the
registered streaming content. The user will not be presented with a dialog or a
play button.

■ HTTP - Using HTTP links, if an application is registered for streaming the type of
content to be downloaded, an application will present a dialog box that allows the
user to play the content, save it to the device, or save it to the card. If no streaming
application is registered to handle the MIME-type or file extension, an application
will present only the save option.

For more information on audio and video streaming in Blazer® 4.5, see Section

14.1.4.4 on page 264

Web Browser API

 Palm Developer Guide, Palm OS Platform, Rev. J 205

11.1.3.2.4 Supported formats for streaming content

The following table lists formats supported by Blazer 4.5 for streaming, but please
note that all codecs will not be available for all devices. For a list of codecs available
by device, see Section 5.1.4 on page 56.

NOTE: For Windows Media video codecs to work properly on the Treo 700p and Treo
755p smartphones, the compression profile should be set to “Baseline” or “Simple”.
This must be changed from the default “Main” profile using a compression tool.

Scheme Formats

URL scheme http://

mms://

rtsp://

Media File Formats .3GP

.3G2

.MP4, .M4A

.MP3

.ASF, .WMA, .WMV

Video codecs MPEG4

H263

WMV

AVC H.264

Audio codecs AMR

QCELP

MP3

WMA

“Wrapper” file
formats

SDP

ASX

WAX, WVX

M3U

Chapter 11 Applications

206 Palm Developer Guide, Palm OS Platform, Rev. J

11.1.3.3 Download restrictions
The web browser includes download restrictions listed in the following sections.

11.1.3.3.1 JPEG images

Normal behavior for a browser is to render JPEG images within the browser, as
opposed to downloading them and saving them on the device. Therefore, an image
must be specially flagged if it is to be downloaded rather than rendered in the
browser. There are two ways to flag an image for download:

■ Use a descriptor file to precede the image. The download manager treats any
images called by descriptor files as a download, and does not render them in the
browser.

■ Flag the image with a special MIME type. If the web browser sees an image with
the following MIME type, it will know the image is for download, not rendering:
x-handspring-image/jpeg.

The only images officially supported for download are JPEG images. All other images
are rendered in the browser.

In Blazer 4.0 and later, the user can also tap-and-hold most images to bring up a Save
As dialog box that allows the user to save the image to the Exchange Manager or to
an expansion card (if present).

11.1.3.3.2 Ring tones

The Palm Ring Tone manager can only play ring tones that are under 64KB. If the user
attempts to download a ring tone that is larger than 64KB, they are presented with
the following message:

Web Browser API

 Palm Developer Guide, Palm OS Platform, Rev. J 207

11.1.3.3.3 Multiple file downloads

There are several schemes for supporting multiple file downloads. The most
common is to combine the files in a ZIP file and then extract that file onto the device.
In order for this to work, the user must first have an application on the device that can
extract ZIP files and that registers for ZIP files with the Exchange Manager.

Alternatively, the Nutshell installer from Ecamm Network (www.ecamm.com) works
well. You can use the installer to package multiple PRC and PDB files into a single PRC
file. When the user runs the resulting installer PRC, the installer unpacks the PRCs and
PDBs and installs them on the device.

11.1.3.3.4 Digital rights management

The download manager provides some digital rights management functionality.
Specifically, wireless service providers can specify domains from which downloads
will be forward locked, which means that the file cannot be beamed, sent, and so
forth. Forward lock applies to several multimedia types. It does not apply to PRC
applications. PRC applications have built-in digital rights management, and those
rights management schemes (for example, tying usage to HotSync® ID) should be
employed at the content developer’s discretion.

http://www.ecamm.com

Chapter 11 Applications

208 Palm Developer Guide, Palm OS Platform, Rev. J

11.1.3.4 Streaming code example
The following example code will allow you to determine if a streaming application is
available, and if so, to stream to that application. To use this code, you must know
how to determine the MIME-type or file extension of the content to be streamed.

/**
*Check to see if a file can be streamed.
*
*Inputs:
* Char* mimeType: mimetype of content or NULL
* Char* extension: extension of content or NULL
* UInt32* creatorId: empty
*
*Outputs:
* Boolean: true if streaming app. found, else false.
* UInt32 *creatorId: creator id of the streaming application if found
*/
Boolean HasStreaming(Char *mimeType, Char *extension, UInt32 *creatorID, Boolean
*nullMime)
{

Boolean isStreamingApp = false;
if(nullMime)

*nullMime = false;

if (mimeType) //valid mimetype
{

if ((errNone == ExgGetDefaultApplication(creatorID, exgRegStreamingTypeID,
mimeType)) ||

(errNone == ExgGetDefaultApplication(creatorID, exgRegStreamingType1ID,
mimeType)) ||

(errNone == ExgGetDefaultApplication(creatorID, exgRegStreamingTypeSkipUIID,
mimeType)))

{
isStreamingApp = true;

}
else if (extension)
{

if ((errNone == ExgGetDefaultApplication(creatorID,
exgRegStreamingExtensionID, extension)) ||

(errNone == ExgGetDefaultApplication(creatorID,
exgRegStreamingExtension1ID, extension)) ||

(errNone == ExgGetDefaultApplication(creatorID,
exgRegStreamingExtensionSkipUIID, extension)))

{
isStreamingApp = true;

if(nullMime)
*nullMime = true;

}
}

}
else if (extension) //valid extension
{

if ((errNone == ExgGetDefaultApplication(creatorID, exgRegStreamingExtensionID,
extension)) ||

(errNone == ExgGetDefaultApplication(creatorID, exgRegStreamingExtension1ID,
extension)) ||

Web Browser API

 Palm Developer Guide, Palm OS Platform, Rev. J 209

(errNone == ExgGetDefaultApplication(creatorID,
exgRegStreamingExtensionSkipUIID, extension)))

{
isStreamingApp = true;

}
}

return isStreamingApp;
}

/**
*Pass url to streaming application.
*
*Inputs:
* Char* url: url to be passed to streaming application
* Uint32 creatorId: creator id received from query to exchange manager in case
* streaming content supported
*
*Outputs:
* Err: any error received from exchange manager transactions
*/
Err StreamToExgMgr(Char *url, UInt32 creatorId, Char *documentExtensionP, Char
*mimeType)
{

UInt32 bytes;
UInt32 bytesSent;
ExgSocketType exgSocket;
Err error;
Char* tempUrlPtr;
EventType event;

Int extLen = 0;
if (!url)

return memErrInvalidParam;

if(documentExtensionP)
{

extLen = StrLen(documentExtensionP);
}

tempUrlPtr = url;
bytes = StrLen(url) + sizeOf7BitChar('\0');

//create exchange manager socket
MemSet(&exgSocket, sizeof(exgSocket), 0);
exgSocket.length = bytes;
exgSocket.target = creatorId;//application to receive message
exgSocket.goToCreator = creatorId;//application to launch after mesg received
exgSocket.localMode = true;//limit to local application
exgSocket.noStatus = true;//don't display progress dialog
if (mimeType != "text/plain")

exgSocket.type = StrDup(mimeType);//set the type of the file who's url is being
passed

exgSocket.name = MemPtrNew(StrLen("filename.") + extLen + sizeOf7BitChar('\0'));

Chapter 11 Applications

210 Palm Developer Guide, Palm OS Platform, Rev. J

StrCopy(exgSocket.name, "filename.");

if(extLen > 0)
{

StrCat(exgSocket.name, documentExtensionP);
}

if (NULL == exgSocket.name)
{

if (NULL == exgSocket.type)//this should not happen
{

ErrNonFatalDisplay("Trying to pass a file with invalid mimetype and
extension");

}

exgSocket.name = StrDup("InvalidExtension");

if (NULL == exgSocket.name)//out of memory?
return 1;

}

//send data to target application
error = ExgPut(&exgSocket);

if(error == exgErrDeviceFull || error == exgMemError)
{

//MJP: attempt flushing the dbcache and try again
PrvForceDBCacheFlush();
error = ExgPut(&exgSocket);

}
if (errNone != error)//check for error
{

if (exgSocket.type)
MemPtrFree(exgSocket.type);

if (exgSocket.name)
MemPtrFree(exgSocket.name);

return error;
}

//loop send until entire url is sent
while ((errNone == error) && (bytes > 0))
{

bytesSent = ExgSend(&exgSocket, tempUrlPtr, bytes, &error);
bytes -= bytesSent;
tempUrlPtr = tempUrlPtr + bytesSent;

}

error = ExgDisconnect(&exgSocket, error);

if (exgSocket.type)
MemPtrFree(exgSocket.type);

if (exgSocket.name)
MemPtrFree(exgSocket.name);

return error;
}

Web Browser API

 Palm Developer Guide, Palm OS Platform, Rev. J 211

11.1.4 Launching the web browser on Palm™ smartphones
If you want your application to take the user directly to a web page, the web browser
has the ability to launch a specific URL. The following code sample shows how to
launch the web browser and go to a specific web page.

static void
LaunchBlazerWithURL(Char* urlP)
{

Err err = 0;
UInt16 cardNo;
LocalID dbID;
DmSearchStateType searchState;
Char* url;

// first check if web browser is installed
err = DmGetNextDatabaseByTypeCreator(true, &searchState, sysFileTApplication,

hsFileCBlazer3, true, &cardNo, &dbID);
if (err)

{
// Display appropriate error dialog...
return;

}
// ok, now let's call the web browser with the URL. Must first copy the URL,
// because it will be disposed of by the system after the browser exits
url = MemPtrNew(StrLen(urlP)+1);
if (!url)

{
return;

}
StrCopy(url, urlP);
// set the memory owner to zero, so it is not deleted
// by the system when we switch apps
MemPtrSetOwner(url, 0);

SysUIAppSwitch(cardNo, dbID, sysAppLaunchCmdGoToURL, url);

Chapter 11 Applications

212 Palm Developer Guide, Palm OS Platform, Rev. J

11.1.5 Launching the web browser in minimal mode
The web browser includes a minimal UI mode. This mode lets you display a
web page with the simplest possible UI. The following code sample shows how
to launch the web browser in minimal mode, and go to a specific web page.

static Boolean doWebBrowserMinimalMode(Char * url)
{

webBrowserMinimalModeLaunchInfo* minimalModeInfo;
 UInt16 currentFormId;
 Char* tempStr;

 minimalModeInfo = MemPtrNew (sizeof(webBrowserMinimalModeLaunchInfo));

 // Since we're calling into ARM, byte-swap the pointers
 minimalModeInfo->launchUrl = (Char*)ByteSwap32(url);

 tempStr = MemPtrNew(5);
 StrNCopy(tempStr, "Done", 5);

 // Since we're calling into ARM, byte-swap the pointers
 minimalModeInfo->doneButtonLabel = (Char*)ByteSwap32(tempStr);

 MemPtrSetOwner (tempStr , 0);
 MemPtrSetOwner (minimalModeInfo, 0);
 MemPtrSetOwner (url, 0);

 AppLaunchWithCommand(hsFileCBlazer3, sysAppLaunchWebBrowserMinimalMode,
minimalModeInfo);

 return true;
}

VersaMail® application API

 Palm Developer Guide, Palm OS Platform, Rev. J 213

11.2 VersaMail® application API
Available on:
■ Centro™ and Treo™ smartphones

■ Tungsten™ T5, Tungsten™ E2, and Palm® T|X handhelds

■ LifeDrive™ mobile manager

This section provides reference information for the VersaMail application
Device APIs. You can use these APIs to create attachment plug-ins for VersaMail
attachments, add email to VersaMail folders programmatically, create background
network connections, and so forth.

11.2.1 Before using the VersaMail® Device APIs
The VersaMail APIs assume a working knowledge of the following:

■ VersaMail application itself

■ Palm OS programming

■ Palm OS 68K runtime environment

11.2.2 Overview of the VersaMail® Device APIs
The VersaMail Device APIs consist of five main components that are documented
in the remaining portions of this section:

■ VersaMail Account Configuration

This component allows you to distribute a PDB file to multiple users to set
their initial VersaMail configuration automatically.

■ Adding Outgoing Emails to VersaMail Folders

This component allows you to add email messages to VersaMail folders
programmatically. It can be used to distribute Welcome email, corporate
information email, application information email, and so forth.

■ VersaMail Font library

This component allows you to set the fonts displayed in the VersaMail Font Picker
dialog box, as well as get and set information about fonts programmatically.

■ VersaMail Attachment Plug-ins API

This component allows you to create a plug-in for a type of attachment (for
example, BMP attachments) that allows users to send and view VersaMail email
attachments.

11.2.2.1 VersaMail® Account Configuration
In an enterprise environment, it is often useful to set up all users with one or
more baseline VersaMail account configurations. You can do so by distributing
a database called __MMDevice.pdb. This feature will work in the VersaMail
application, version 2.0 or later. For VersaMail 3.1 and later, the __MMDevice
database version must be 0x1003.

Chapter 11 Applications

214 Palm Developer Guide, Palm OS Platform, Rev. J

11.2.2.2 Overview of the MMDevice database
The MMDevice database consists of various records that set default values in
VersaMail accounts. Each record follows the same basic syntax. When the VersaMail
application is started on a handheld, it looks for the __MMDevice.pdb, sets account
information based on the values therein, and then deletes __MMDevice.pdb. You
should not confuse the file __MMDevice.pdb with _MMDevice.pdb (single
underscore), which is usually created when an account configuration has changed.

__MMDevice.pdb is a case-sensitive name. It should have type and creator codes
of asc3 and a version number of 4.2 in hex (0x0420).

You can use the VMAccConfig application in the samples folder of the Palm OS SDK
to create an __MMDevice.pdb database automatically.

11.2.2.2.1 MMDevice database record syntax

The syntax for each record in the MMDevice database is as follows:

set <key> <account slot> <value>

with one or more spaces or tab characters between each field.

■ set

This string literal is required at the beginning of each record.

■ key

A string referencing the particular account parameter you want to set. For more
information, see Section 11.2.2.3 on page 215.

■ account slot

You should set this value to 0. The account will be added to the end of the list of
existing accounts. The VersaMail application accepts only a total of 8 accounts.

■ value

The value you want to set for the particular account parameter.

The value is not parsed other than for keys that must be numeric. Trailing and
leading whitespace are trimmed, however.

To specify the default value for a record key, simply omit the entire record key line.
If you include the record key line with a blank value, the key’s value is explicitly set
to an empty string that may or may not be valid for a particular record key.

For example, the following record would set the incoming mail server for the next
account in the list to mail.mac.com:

set incomingServer 0 mail.mac.com

NOTE: The title key is mandatory. See Section 11.2.2.3.12 on page 215 for more
information.

VersaMail® application API

 Palm Developer Guide, Palm OS Platform, Rev. J 215

11.2.2.3 MMDevice database record keys
The following MMDevice record keys are valid. The keys are not case sensitive and,
unless otherwise noted, default to an empty value.

11.2.2.3.1 apn

The string that specifies the default access point name (APN) to be used for the
account. This refers to a service setting set in the Network preferences panel. If not
specified, the default service is used.

11.2.2.3.2 connectionType (deprecated in VersaMail 3.1)
How the connection is made with the email server. You can set it to SyncOnly,
PalmWireless, or ModemDialup. For ModemDialup, the dial-up settings must be
configured through the system’s Network preferences panel.

11.2.2.3.3 emailAddress

The fully qualified address for the email account.

11.2.2.3.4 incomingPort

The TCP/IP access port for the incoming email server. The default value is blank, but
the default TCP/IP access port for POP servers is 110, and the default access port for
IMAP servers is 143. This value must be specified if the serverType value is specified.
For more information, see serverType (deprecated in VersaMail 3.1).

11.2.2.3.5 incomingServer

The server for incoming email. The incoming server is usually a POP or IMAP server.

11.2.2.3.6 outgoingPort

TCP/IP access port for the outgoing email server. Typically, this is the SMTP port 25.

11.2.2.3.7 outgoingServer

The server for outgoing email. The outgoing server is usually an SMTP server.

11.2.2.3.8 password

The password for the account.

11.2.2.3.9 replyTo

The fully qualified email address for the Reply-To header of outgoing mail.

11.2.2.3.10 rootMailbox

For an IMAP email account, this specifies the root prefix of the account. This is
typically not needed with most IMAP servers.

11.2.2.3.11 serverType (deprecated in VersaMail 3.1)
The protocol of the incoming email server—POP, PalmDotCom, Enterprise, or IMAP. The
default for this key is POP. If you specify this key, you must specify the incomingPort,
as well. For more information, see incomingPort.

11.2.2.3.12 title

The title of the account as shown in the VersaMail application. For example,
“Personal Mail.” You must enter a value for this record key.

Chapter 11 Applications

216 Palm Developer Guide, Palm OS Platform, Rev. J

11.2.2.3.13 useEncryptedPassword

Whether the account uses an encrypted password. Specify YES or NO.
The default is NO.

11.2.2.3.14 useEsmtp

Whether the account requires authenticated SMTP. Specify YES or NO.
The default is NO.

11.2.2.3.15 userName

The username for the account.

11.2.2.3.16 samcreatorid (only in VersaMail 3.1)
The creator ID of the service access module that provides the service. This key has
been introduced to decide which protocol should be used with a new account. Valid
choices are 'pop3', 'Imap' or 'ExAs'. The value for the key must be set or the account
will default to use pop3.

NOTE: Values are case sensitive and require the surrounding single quotes ('') as
part of the value string.

11.2.2.3.17 samtypeid (only in VersaMail 3.1)
The type ID of the service access module. For VersaMail 3.1, this must be 'appl'
(with the apostrophes).

11.2.3 Adding outgoing email to VersaMail® folders
This section describes the various methods used to add outgoing email to VersaMail
folders. You can use the launch codes provided by the VersaMail application directly
or use the Exchange Manager or Helper Notification methods documented in the
Palm OS Programmer’s Companion, Volumes I and II and the Palm OS Programmer’s
API Reference.

The direct and Exchange Manager methods work in the VersaMail application,
version 2.0 or later. The Helper Notification method works in the VersaMail
application, version 2.5 or later.

11.2.3.1 Overview of adding email to the Outbox
There are three basic methods for adding email to the VersaMail Outbox:

■ Using the Exchange Manager

An application can use the Exchange Manager Send command or the _send URL
send scheme to sublaunch a Compose email message form. The Compose form
allows the user to add text to the message and save the message in the VersaMail
Outbox or Drafts folder for later sending. Using the Send command displays a list
box that gives the user a choice of Bluetooth® wireless technology, SMS, or the
VersaMail application to send the email. If the VersaMail application is not on the
device, the list box does not contain the VersaMail option. Similarly, on devices
that don’t have the Bluetooth® wireless technology or SMS option, the VersaMail
application is automatically launched.

VersaMail® application API

 Palm Developer Guide, Palm OS Platform, Rev. J 217

The following sample code shows how an application can use the Exchange
Manager to sublaunch a Compose email message form:

/* Use the Exchange Manager to create a New mail message */
/* Lets you add an attachment */

ExgSocketType exgSocket;
Err err = errNone;

Char *textBuf = "test";
UInt32 size = StrLen(textBuf) + 1;

 // it's important to initialize the structure to null values

MemSet(&exgSocket,sizeof(exgSocket),0);
exgSocket.description = "Testing";

/* A box pops up with an option to pick SMS, VersaMail application, etc.
 * You may not see the VersaMail option in the list if the VersaMail
 * application is not installed on the device.
 */

exgSocket.name = "?_send:Sample.txt";

/* send is important here */

exgSocket.type = ".txt";
err = ExgPut(&exgSocket);

 if (err == 0) {
 ExgSend(&exgSocket,textBuf,size,&err);
 ExgDisconnect(&exgSocket,err);
 }

For more information on using the Exchange Manager method, see the Palm OS
Programmer’s Companion, Volume II and the Palm OS Programmer’s API
Reference.

■ Using Helper notifications

This method supports a SysUISwitch from the launching application to a full
VersaMail email Compose form and back again. The full compose form is opened
when the appropriate control is tapped in the launching application, and once the
user has saved or sent the message, they are returned to the launching
application.

For more information on the Helper notifications method, see the Palm OS
Programmer’s Companion, Volume I, the Palm OS Programmer’s API Reference,
and the sample code AddEmail in the Samples folder of the Palm OS SDK.

■ Programmatically using the strategies documented in this chapter

You must use the strategies documented in this chapter to allow a third-party
application to add outgoing email messages to a VersaMail folder.

All of the strategies documented in this chapter use VersaMail launch commands.

Chapter 11 Applications

218 Palm Developer Guide, Palm OS Platform, Rev. J

11.2.3.1.1 VersaMail launch commands

There are three basic launch commands that you can use:

■ sysAppLaunchCmdAddRecord

This launch command creates a basic message without an attachment. You can
use MailAddRecordParamsType to simply add the message to the VersaMail
Outbox or MailAddRecordsParamsTypePlus to add the message to a different
VersaMail category, such as Drafts.

The attachment functionality of MailAddRecordsParamsTypePlus is ignored by the
VersaMail application when it is used with sysAppLaunchCmdAddRecord. To use the
attachment functionality of MailAddRecordsParamsTypePlus, you must use the
next launch code, MMPRO_ADD_MESSAGE_WITH_ATTACHMENT, instead.

sysAppLaunchCmdAddRecord is available in the systemMgr.h header file,
MailAddRecordsParamsType is available in the AppCmdLaunch.h header file, and
MailAddRecordsParamsTypePlus is available in the PalmVMLaunch.h header file.

■ MMPRO_ADD_MESSAGE_WITH_ATTACHMENT

This launch command works much like sysAppLaunchCmdAddRecord, except
you can use MailAddRecordsParamsTypePlus to specify both a category and
an attachment.

MMPRO_ADD_MESSAGE_WITH_ATTACHMENT is available in the PalmVMLaunch.h
header file.

■ MMPRO_LAUNCH_CODE

This launch command actually launches the VersaMail application itself and
presents the user with a full email compose form. The MMPRO_LAUNCH_CODE
command uses the MMProLaunchStruct data structure to add attachments smaller
than 64KB and MMProLaunchStruct2 to add attachments larger than 64KB.

MMPRO_LAUNCH_CODE, MMProLaunchStruct, and MMProLaunchStruct2 are available
in the PalmVMLaunch.h header file.

VersaMail® application API

 Palm Developer Guide, Palm OS Platform, Rev. J 219

11.2.4 VersaMail® Font library
This section provides information on how to use the VersaMail Font library. You can
use the Font library to set the VersaMail Font Picker user interface and to work directly
with font information on a device. More information on the Font library can be found
in the Palm API Guide, Palm OS Platform.

11.2.4.1 Checking whether the Font library is present
To check whether the Font library is present and loaded on a handheld, use
SysLibFind to check for the library name PalmSGFontLib and a 0 error return value.

The VersaMail Font library is not included in the current versions of the VersaMail
application. The library has to be retrieved, and you must perform a HotSync®
operation to install it on a device. The library is available in the Palm OS SDK.

Also, the Font library requires the font databases—PalmSGHiResFonts.pdb for high-
resolution devices and PalmSGLowResFonts.pdb for low-resolution devices. The
font databases are available in the VersaMail application, version 2.5 or later, and
in the Palm OS SDK.

11.2.4.2 Using the Font library
The Font library is loaded during many handheld events, such as HotSync operations,
but in order to use the functions in the Font library, you need to obtain and store the
library reference number. You can use standard methods to maintain easy access to
the reference number, such as globals with associated accessor routines or Palm OS
FtrSet and FtrGet calls. For more information, see VMFontOpen.

Also, before you use any of the Font Picker user interface functions, you must
initialize the Font Picker user interface data structure using InitFontUI. You currently
can apply only one style to a font. For example, you can apply bold or italic to a font,
not bold and italic.

Chapter 11 Applications

220 Palm Developer Guide, Palm OS Platform, Rev. J

11.2.5 VersaMail® Attachment Plug-ins API
This section provides information on how to create a plug-in so that users can view
and send email attachments using your plug-in in the VersaMail application. The
VersaMail Attachment Plug-ins API is declared in the header file PalmVMPlugin.h.

This feature works with the VersaMail application, version 2.6 or later. The Palm OS
SDK includes a sample plug-in for TXT attachments.

11.2.5.1 Overview of how the VersaMail® application handles
plug-ins
The handling of email attachments in the VersaMail application is controlled by the
VersaMail Plug-in Manager.

When a user attempts to view a particular attachment in the VersaMail application,
the VersaMail Plug-in Manager first tries to find the appropriate plug-in given the
attachment’s MIME type. If multiple compatible plug-ins are found, the VersaMail
application displays a list so the user can choose the plug-in they want to use.

If no plug-in is found, the Plug-in Manager attempts to find an application registered
with the Exchange Manager as the default application to handle the particular MIME
type. If no Exchange Manager application is found, the message “No viewer for this
attachment type” is displayed and the attachment can be viewed with the plain text
viewer.

When a user attempts to send a particular attachment in the VersaMail application,
all installed plug-ins are queried to find out what type of attachment each of them
supports. When an appropriate plug-in is found, the VersaMail application queries
the plug-in to display a list of possible attachments that can be sent. When a user
selects an attachment from this list, the VersaMail application calls the appropriate
plug-in to provide the data required to send the attachment.

11.2.5.2 Overview of plug-in design
A plug-in should be designed as a Palm OS PRC file with the application type “mmpl”
that supports the specific VersaMail launch commands detailed in this section.
Because plug-ins are seamless to the user and should not appear to be separate
programs, plug-ins should be created without an associated program icon.
Furthermore, when a plug-in has finished viewing or sending an attachment,
it should return control to the VersaMail application, not to the Applications View
or to any other application.

The VersaMail application builds a dynamic list of all available plug-ins so that the
user can install or remove them as desired. A separate plug-in should be provided for
each type of file attachment. If there are multiple plug-ins that support the same type
of file attachment, the user is provided with a list of possible plug-ins.

The VersaMail launch command that plug-ins must support are as follows:

■ MMPRO_PLUGIN_GET_INFO_LAUNCHCODE

This launch command is sent by the VersaMail application when it is trying to get
information about what plug-ins are available to send a particular attachment.

■ MMPRO_PLUGIN_QUERY_LAUNCHCODE

This launch command is sent by the VersaMail application to get a list of possible
attachments a user can send.

VersaMail® application API

 Palm Developer Guide, Palm OS Platform, Rev. J 221

■ MMPRO_PLUGIN_EXTENDED_QUERY_LAUNCHCODE

This launch command is sent by the VersaMail application to get a more complete
description of possible attachments a user can send. This launch command is
provided for applications in which a simple, short description of a possible
attachment is not enough information for a user to understand what the
attachment is. For example, in Date Book, a simple date without the information
associated with that date might not be enough information for a user to determine
if they want to send the date as an attachment.

■ MMPRO_PLUGIN_SEND_LAUNCHCODE

This launch command is sent by the VersaMail application when a user has
selected an attachment to send. The plug-in prepares the attachment so that it can
be sent in response.

■ MMPRO_PLUGIN_RECEIVE_LAUNCHCODE

This launch command is sent by the VersaMail application when an attachment of
the appropriate type is received. It allows the plug-in to do whatever you would
like the plug-in to do with a received attachment. For example, you might want to
display the attachment in a window that includes a Done button that users can tap
when they have finished viewing the attachment.

Chapter 11 Applications

222 Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

 Palm Developer Guide, Palm OS Platform, Rev. J 223

CHAPTER 12

12. Developing SDIO
Applications for Palm®

Handhelds

This chapter provides information on writing Palm OS® applications that interact with
SDIO hardware. Because there is a wide range of possible SDIO devices, it focuses
solely on those aspects of program design specific to the Palm OS application, Palm
handhelds, and the SDIO slot driver.

This chapter provides:

■ Pointers to the software, hardware, and documentation you’ll need to create
your application

■ Aspects of the Palm OS that you’ll use when writing your application

■ Programming guidelines specific to SDIO applications

■ Pointers relative to creating the SDIO card itself

Much of an SDIO application is dictated by the hardware with which it interacts.
However, because SDIO is a standard, and because these SDIO applications run
on the Palm OS, all such applications have a number of traits in common. This
commonality is the subject of this chapter.

12.1 SD, SDIO, and MultiMediaCard specifications
The SD Card Association (SDA) publishes the SDIO Card Specification, which is
based on and refers to the SDA document titled SD Memory Card Specifications,
Part 1, PHYSICAL LAYER SPECIFICATION. Both of these documents provide essential
foundation material for the contents of this document. You should be familiar with
the SDIO Card Specification and with those parts of the SD Memory Card
Specifications that document card modes, card initialization, interrupts, registers,
and card reading and writing. Depending on the SDIO hardware with which you are
working, additional sections of the SD Memory Card Specifications document may
be of interest.

The SD Card Association’s website can be found at http://www.sdcard.org/. You’ll
need to be a member in order to obtain the specifications from the SD Card
Association.

NOTE: Creating Palm OS applications that can use and exchange data from other
products via SD Memory cards is outside the scope of this document. However, to
make sure that data can be interchanged with present and future SD products, refer
to the appropriate SD Association specification depending on the type of application.

http://www.sdcard.org/

Chapter 12 Developing SDIO Applications for Palm® Handhelds

224 Palm Developer Guide, Palm OS Platform, Rev. J

For developers working with MultiMediaCards, the MultiMediaCard Association’s
website can be found at http://www.mmca.org/. The MultiMediaCard specifications
are available from the MultiMediaCard Association to its members.

The SDIO slot driver has been written to accommodate the following specifications:

■ MultiMediaCard memory cards, V1.4 to V3.0

■ SD memory cards, Part 1, V1.0 (and the supplement to part 1)

SDIO V1.0

12.2 Palm OS® SDK
General Palm OS programming concepts from ACCESS Co. LTD are documented in
the Palm OS Programmer's Companion. Reference documentation for the APIs can
be found in the Palm OS Programmer’s API Reference. Both of these documents are
installed as part of the Palm OS Software Developer’s Kit (SDK), which can be found
at the ACCESS Developer Network, http://www.access-company.com/
developers/. SDIO applications are not supported on versions of the Palm OS prior
to 4.0.

Although you’ll want to be familiar with a number of different aspects of Palm OS
programming, pay particular attention to the portions of the Companion and
Reference that cover the Expansion and VFS Managers; these chapters show you
how to read and write expansion media, including SD memory cards.

12.3 Software architecture of an SDIO application
Palm OS applications that interact with SDIO cards make use of the functions
provided by the Expansion Manager, the VFS Manager, and the SDIO slot driver.
Before you can write such a Palm OS application, you should have an understanding
of how your application will interact with these and other features of the Palm OS
software.

The following figure presents a simplified view of how the SDIO slot driver relates to
your applications, the Expansion Manager, and the VFS Manager. Unlike other
Expansion Manager slot drivers, the SDIO slot driver exposes its APIs to applications.
Because it also lies beneath the Expansion and VFS managers, you access SDIO
hardware through a combination of Expansion Manager, VFS Manager, and SDIO
slot driver calls. Note that you use the VFS Manager with a given SDIO card only if
there is an SD or SDIO file system present on that card.

The VFS Manager APIs are used for all file system access on an expansion card.
When inserted, SD memory and SDIO CSA memory is mounted as file system
memory. Therefore, access to these memory areas is done using the VFS Manager

http://www.mmca.org/
http://www.access-company.com/developers/
http://www.access-company.com/developers/
http://www.access-company.com/developers/
http://www.access-company.com/developers/

Software architecture of an SDIO application

 Palm Developer Guide, Palm OS Platform, Rev. J 225

APIs. Details of accessing data on file systems can be found in the standard Palm OS
documentation on Expansion Manager and VFS APIs.

12.3.1 Expansion Manager
The Expansion Manager is a software layer that manages slot drivers on Palm OS
handhelds. The Expansion Manager is not solely responsible for support of
expansion cards; rather, it provides an architecture and higher-level set of APIs that,
with the help of low-level slot drivers and file system libraries, support various types
of media.

The Expansion Manager:

■ broadcasts notification of card insertion and removal

■ plays sounds to signify card insertion and removal

■ mounts and unmounts card-resident volumes

NOTE: Some of the functions provided by the Expansion Manager are designed to
be used by slot drivers and file systems and are not generally used by third-party
applications.

For a detailed explanation of the functions that make up the Expansion Manager,
see the “Expansion Manager” chapter in the Palm OS Programmer’s API Reference
at http://www.access-company.com/developers/documents/palmos/
palmos.html.

12.3.2 VFS Manager
The VFS (Virtual File System) Manager provides a unified API that gives applications
access to many different file systems on many different media types, including SD
media. The VFS Manager is used for all file system access on an expansion card. In
the case of an SDIO card, the VFS Manager is typically used to access any function
CSA memory. The data stored in CSA memory is structured as a FAT12/16 file system

Expansion
Manager

VFS
Manager

Applications and System

FAT
File

System

SDIO Slot
Driver

(SD, SDIO, MMC)

http://www.access-company.com/developers/documents/palmos/palmos.html
http://www.access-company.com/developers/documents/palmos/palmos.html

Chapter 12 Developing SDIO Applications for Palm® Handhelds

226 Palm Developer Guide, Palm OS Platform, Rev. J

(FAT 12/16/32 for the LifeDrive™ mobile manager) and is therefore ideally suited for
access by the VFS Manager.

Combo cards may contain SD memory that is also accessed through the VFS
Manager APIs.

For a detailed explanation of the functions that make up the VFS Manager, see the
“Virtual File System Manager” chapter in the Palm OS Programmer’s API Reference
at http://www.access-company.com/developers/documents/palmos/
palmos.html.

12.3.3 SDIO slot driver
To simplify the interaction with the SDIO hardware, Palm has created an SDIO
slot driver. It replaces the Palm OS SD/MultiMediaCard slot driver, which isn’t
SDIO-aware, and consists of data structures and functions that allow you to
easily manage power, interrupts, and data on the SDIO card.

The SDIO slot driver controls all media supported by an SD expansion slot, including
SD media, MultiMediaCard media, and SDIO media.

An examination of the functions provided by the SDIO slot driver shows that it
implements most of the software functionality outlined in the SDIO Card
Specification. It does not, however, support the following:

■ SDIO Suspend/Resume Operation

■ SDIO Read Wait Operation

■ SDIO RW Extended Block Operation in “forever” mode

12.3.4 Notification Manager
The Palm OS Notification Manager allows applications to receive notification when
certain system-level or application-level events occur. Although the Notification
Manager has many uses, developers of SDIO applications should particularly take
note of the fact that you use it to detect card removal by registering for a
sysNotifyCardRemovedEvent (see Section 12.4.3 on page 228).

12.4 Guidelines for SDIO applications
All SDIO applications need to be aware of the power needs of the SDIO card. As well,
they need to be able to handle interrupts generated by the card, and must be aware
of when an SDIO card is inserted or removed from the handheld’s SD slot. The
following sections discuss these and other SDIO-application-specific topics.

http://www.access-company.com/developers/documents/palmos/palmos.html
http://www.access-company.com/developers/documents/palmos/palmos.html

Guidelines for SDIO applications

 Palm Developer Guide, Palm OS Platform, Rev. J 227

12.4.1 Power management
When the handheld awakes from sleep mode, it doesn’t turn the card on. Only when
there is a request to access the card does it turn the card on.

12.4.1.1 Turning on card functions
You can turn on a given SDIO card function explicitly with SDIOSetPower. Be aware
that you, as an application developer, are responsible for managing card power.

You must ensure that the total of all function hardware that is active does not draw
in excess of the SDIO-specified maximum of 200ma.

Perform the following steps to explicitly turn on an SDIO card function:

1. Disable SDIO interrupts with SDIODisableHandheldInterrupt—even if your
application doesn’t use interrupts.

2. Verify that there is sufficient current available to power the card function. To aid
in the power management process, the SDIO slot driver provides three functions:
SDIOGetCurrentLimit, SDIOSetCurrentLimit, and SDIORemainingCurrentLimit.

NOTE: These three functions do not detect or limit current draw, check the
battery level, or reflect how much energy the battery has left.

The current limit for each function can be obtained by calling
SDIOGetCurrentLimit or changed by calling SDIOSetCurrentLimit. Prior
to enabling power to a given function, call SDIOGetCurrentLimit to determine
how much power it will draw, and compare it to the value returned from
SDIORemainingCurrentLimit, which indicates how much current can be spared.

3. Turn the function on using SDIOSetPower.

4. Reenable interrupts by calling SDIOEnableHandheldInterrupt.

After turning off an SDIO card function (with SDIOSetPower), be sure to call
SDIOSetCurrentLimit and set its current limit to zero.

When a card is removed, all of the in-memory current limits are automatically
set to zero.

12.4.1.2 Auto power off
The SDIOSetAutoPowerOff function allows you to specify an amount of time after
which the power and data signals to a given function on an SDIO card should be
turned off. You specify this time interval in system ticks; there are SysTicksPerSecond
ticks per second. To disable the auto-power-off feature, simply call this function and
supply a tick count of zero.

To obtain the current auto-power-off settings for a given SDIO card function, use
SDIOGetAutoPowerOff.

12.4.1.3 Callbacks
The SDIO slot driver allows your application to register callback functions that will be
invoked whenever the corresponding event occurs on the SDIO card. Several of these
callbacks relate to power management.

Chapter 12 Developing SDIO Applications for Palm® Handhelds

228 Palm Developer Guide, Palm OS Platform, Rev. J

Whenever the Palm handheld is about to be put to sleep, the callback function
corresponding to sdioCallbackSelectSleep is called. Just after the handheld wakes,
the function corresponding to sdioCallbackSelectAwake is called. These callback
functions can be called from either an interrupt routine or a non-interrupt routine; as
a result interrupts may be disabled or enabled. In either case, they should always be
as fast as possible.

Whenever SDIO card power is turned on or is about to be turned off, the callback
function corresponding to sdioCallbackSelectPowerOn or
sdioCallbackSelectPowerOff, respectively, is called. While processing these
functions, never call SDIOSetPower in order to turn an SDIO card’s power on or off.
These functions can be called from within an interrupt handler, so they should be
as fast as possible.

12.4.2 Interrupt handling
An SDIO card is capable of interrupting the host device into which it is inserted—in
this case, the Palm handheld. The SDIO slot driver allows you to register a callback
function that is called whenever the card interrupts the handheld.

Register for the interrupt callback by calling SDIOSetCallback and specifying that you
are registering for sdioCallbackSelectInterruptSdCard. In your callback function,
be sure to reset the interrupt source to prevent the interrupt callback from being
called again inadvertently.

Whether or not you have registered an interrupt callback function, you can enable or
disable the SDIO interrupt on the handheld by calling SDIOEnableHandheldInterrupt
or SDIODisableHandheldInterrupt. Note that these functions only affect interrupts
on the handheld; they do not turn on or off interrupts on the SDIO card itself.

These functions are implemented as an incrementing counter, making them re-
entrant. For instance, for every call to SDIODisableHandheldInterrupt there must
be an equal number (or more) of calls to SDIOEnableHandheldInterrupt in order to
re-enable interrupts.

By default, when the card is inserted interrupts on the handheld are enabled, but are
disabled internally until an interrupt callback is set with SDIOSetCallback. Note that
in order to receive the SDIO interrupt, power to the card must be on, even if the
handheld is asleep.

12.4.3 Detecting card insertion and removal
Applications that depend on the presence of the SDIO card in the slot should register
for a sysNotifyCardRemovedEvent, which is broadcast when the user removes the
card from the SD slot.

Be sure to unregister for the sysNotifyCardRemovedEvent notification and any SDIO
callbacks when your application terminates.

For more information on registering and unregistering for notifications, see the
“Notification Manager” chapter in the Palm OS Programmer’s API Reference. The
“Expansion” chapter of the Palm OS Programmer’s Companion, vol. I discusses the
various notifications that are issued when a card is inserted or removed, or when
a volume is mounted or unmounted.

Both documents can be found at the ACCESS Developer Network at http://
www.access-company.com/developers/documents/palmos/palmos.html.

http://www.access-company.com/developers/documents/palmos/palmos.html
http://www.access-company.com/developers/documents/palmos/palmos.html

Developing the SDIO peripheral

 Palm Developer Guide, Palm OS Platform, Rev. J 229

12.4.4 Auto Run
When a card is inserted into the SD slot, after it has been initialized any file system
memory present on the card is mounted by the Expansion Manager. This includes
all SD memory, in the case of a standard SD card or SDIO combo card, and all SDIO
Function CSA memory for functions 0-7.

After mounting of the file systems, the SDIO slot driver broadcasts a series of Auto
Run (sysNotifyDriverSearch) notifications. These notifications are sent in an
attempt to locate function- or card-specific drivers, and allow those drivers that are
already on the handheld to launch themselves.

The typical sequence of events after a card is inserted is as follows:

1. Power is applied to the card.

2. The card is initialized according to the SDIO, SD, or MultiMediaCard specification,
as appropriate.

3. Information about the card (tuples, clock speed, CSD, CID, etc.) is read.

4. Any recognized file systems are mounted.

5. sysAppLaunchCmdCardLaunch is sent to start.prc on each mounted file system.

6. The Auto Run notifications (sysNotifyDriverSearch) are sent.

7. sysAppLaunchCmdNormalLaunch is sent to start.prc on each mounted file system.

For SDIO cards, one Auto Run notification is broadcast for the SD memory portion of
a combo card, and an additional notification is broadcast for each card function (up
to 7). For SD memory and MultiMediaCard memory cards, only one such notification
is sent. The notifications are sent starting with SD memory, followed by function 7 (if
there is one) and proceeding to function 1 as appropriate.

The notifyDetailsP field of the SysNotifyParamType structure that accompanies
the Auto Run notification points to an AutoRunInfoType structure. Each driver that
has registered for sysNotifyDriverSearch should examine the contents of the
AutoRunInfoType structure to determine if it is the driver that should control the
inserted card. If so, the driver should then check the SysNotifyParamType structure’s
handled field. If handled is set to true, another driver has received the broadcast and
will control the card. If handled is set to false, the driver should set it to true to
indicate that it will control the device.

12.5 Developing the SDIO peripheral
An SDIO application is only as good as the hardware with which it interacts. The
following sections provide some tips for the creation of an SDIO peripheral to be
used with a Palm handheld.

12.5.1 Specifications
When developing an SDIO peripheral, it is extremely important that you following
the specifications identified in Section 12.1 on page 223. Be sure to pay close
attention to the power restrictions, as the Palm handheld isn’t able to deliver more
power to an SDIO peripheral than the specification maximum.

Chapter 12 Developing SDIO Applications for Palm® Handhelds

230 Palm Developer Guide, Palm OS Platform, Rev. J

12.5.2 SDIO slot driver
A Palm handheld running Palm OS 4.0 or 5.0 supports SD/MultiMediaCard expansion
cards. If the SDIO slot driver is installed, it will also support SDIO expansion cards. In
both cases, only one file system can be mounted for a given expansion card. Future
versions of the Palm OS will likely lift this restriction, allowing up to seven file
systems to be mounted for an SDIO expansion card.

In order to support SDIO peripherals, handhelds running Palm OS 4.0 must either be
flash-upgraded to a version of the OS that supports SDIO, or must have the SDIO slot
driver separately installed in RAM. The SDIO slot driver can be downloaded from the
Palm website and installed as a PRC file in RAM on Palm OS 4.0 devices. After a soft
reset, the slot driver in RAM is recognized and takes precedence over the SD/
MultiMediaCard slot driver in ROM.

NOTE: Devices based on Palm OS 5.0 have the SDIO slot driver built into the ROM.

You can verify whether a given slot driver is “SDIO-aware” by calling
SDIOAPIVersion. This function returns expErrUnimplemented if the specified driver
doesn’t support SDIO, or errNone if it does. If the driver does support SDIO this
function also returns the slot driver version number through the versionP parameter.

To remove the SDIO slot driver from RAM, you must perform a hard reset of the
handheld. You cannot delete the SDIO slot driver using the Application Launcher’s
“Delete” function. Note that to avoid having the SDIO slot driver reinstalled on the
handheld during the next HotSync operation, you must remove the slot driver PRC
from the Backup directory of your desktop computer.

12.5.3 SDIO card initialization and identification on Palm OS
The process of identifying and initializing an SDIO card is specified in the SDIO Card
Specification. One of the first steps in developing an SDIO card is to have the card
identify itself as an SDIO card to the host.

12.5.3.1 Identification
Identification of a card is done only once, at the time the card is inserted in the
handheld’s SD slot. Information obtained from the card during the identification
phase is retained in the handheld’s memory until the card is removed. Among other
things, this information includes:

■ the type of card in the slot

■ what the card contains

■ the card’s limits

■ data read from tuples

By default SDIO cards power-off automatically after a certain amount of inactivity.
This behavior can be modified with the SDIOSetAutoPowerOff function.

12.5.3.2 Initialization
A card is initialized every time it is turned on. The SDIO slot driver follows the
appropriate initialization flowchart—SD mode or SPI mode—from the “SDIO Card
Initialization” section of the SDIO Card Specification to initialize the card.

Developing the SDIO peripheral

 Palm Developer Guide, Palm OS Platform, Rev. J 231

During the initialization phase, the handheld operates within the range of SD or
SPI clock frequencies specified in the SD Memory Card Specifications (from zero
to 400kHz). The actual clock frequency used depends upon the model of the Palm
handheld.

The TPLFID_FUNCTION tuple, located immediately after the CISTPL_FUNCID tuple
in the CIS for function 0, contains the TPLFE_MAX_TRAN_SPEED byte. This byte
indicates “the maximum transfer rate per one data line during data transfer”;
essentially, the maximum clock frequency that the card can support. As soon as this
tuple is read, the SDIO slot driver increases the clock speed to the highest possible
frequency that doesn’t exceed the maximum specified in TPLFE_MAX_TRAN_SPEED.

12.5.4 Code Storage Area (CSA)
In order for an SDIO card’s Code Storage Area (CSA) to be readable by the Palm OS
software, the CSA should be in FAT12/16 format (FAT 12/16/32 for the LifeDrive™
mobile manager), and any drivers, data, or applications that the peripheral would like
to be automatically detected by the Palm handheld should reside in the /Palm and /
Palm/Launcher directories. Once the CSA area is mounted, applications may access
any data within the CSA, irrespective of the directory in which that data resides.

Chapter 12 Developing SDIO Applications for Palm® Handhelds

232 Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

 Palm Developer Guide, Palm OS Platform, Rev. J 233

PART III

Debugging

This part of the guide provides details on how to debug problems with the code
you create.

234 Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

 Palm Developer Guide, Palm OS Platform, Rev. J 235

CHAPTER 13

13. Debugging

This chapter details how to debug problems with Palm APIs using tools and utilities
available for Palm smartphones.

13.1 Overview
Available on:
■ Centro™ and Treo™ smartphones

The following sections explain the tools and methods available for developing and
debugging applications including:

■ Simulators

– Release Simulator

– Debug Simulator

■ DebugPrefs

■ Metrowerks CodeWarrior

■ PalmDebugger

■ Garnet OS Developer Suite (also called Palm OS Developer Suite, or PODS)

13.1.1 Hardware requirements
There is no USB support for debugging on Treo 600 smartphones, so you will need
to use a serial cable for debugging.

The Treo 650, Treo 700p, and Treo 755p smartphones support USB debugging for 68K
applications.

For serial debugging on the Treo 650, Treo 700p, and Treo 755p smartphones, you will
need the Treo 650 smartphone serial cable adapter and a Treo 600 smartphone serial
cable.

13.1.2 Simulator vs. on-device debugging
When debugging problems with your applications, it may be more effective to use
the simulator on a PC or actual on-device debugging, depending on the situation.

Simulators are useful for:

■ Single stepping through 68K source code

■ Checking for memory leaks

■ Checking basic functionality

■ Checking quick changes to your code (for example, to the user interface)

Chapter 13 Debugging

236 Palm Developer Guide, Palm OS Platform, Rev. J

■ Discovering if a crash is caused by an inappropriate API call (such as passing on
the wrong parameter)

■ Checking database and recording status

On-device debugging is useful for :

■ Issues related to the radio (such as voice, data, or Bluetooth)

■ Checking for memory corruption

■ Watching variables

■ Obtaining stack traces

■ Testing the speed of the application and connections

13.1.3 Debugger modes
The following section assumes that you understand some background information
on the Palm OS 5.0 architecture and environment, including details of the
relationship between the 68k and PACE layers.

The following figure shows the various debugger nubs and where they are located
within the Palm OS on a Palm smartphone.

68K Application

 Debugging On Palm Smartphones

PACE

Palm OS

68K Debugger Nub

ARM Debugger Nub

Debug Environment

Debug Console

Registers

Overview

 Palm Developer Guide, Palm OS Platform, Rev. J 237

13.1.3.1 Debug mode

The 68K PACE Debug mode is active if you see a blinking block in the lower-left corner
of the screen. In debug mode, there is no response to keyboard or touch screen input.
In debug mode, the device is ready to connect to PalmDebugger and receive
debugging commands.

To connect, select the shortcut character, enter a period (.), and then press Option-1.

To exit console mode, soft reset the device by removing the battery and replacing it,
or do a pin reset.

13.1.3.2 Console mode

The 68K PACE Console mode is active if you see a blinking block in the lower-right
corner of the screen. In console mode, the device works as usual, and will be ready
to connect to the CodeWarrior debugger or PalmDebugger for 68k source code
debugging.

To connect, select the shortcut character, enter a period (.), and then press Option-2.
Alternatively, press Shift+HotSync to activate 68K console mode.

To exit console mode, soft reset the device by removing the battery and replacing it,
or do a pin reset.

NOTE: The PACE debugger nub stops the PACE environment, not the whole system.

Chapter 13 Debugging

238 Palm Developer Guide, Palm OS Platform, Rev. J

13.2 Simulators and emulators
Simulators and emulators are tools that help developers write applications for Palm
mobile devices. At the most basic level, simulators and emulators are software
programs that enable the execution of an application written for a different computer
environment. They allow developers to test and use their applications when they do
not have a device.

The most useful feature is the ability to view changes to an application on the fly (for
example, to the user interface). Simulators and emulators assist with many tasks,
and are useful for developing and debugging applications for Palm devices running
Palm OS.

13.2.1 What's the difference?
Specifically, a simulator is a software application that imitates another system. For
example, a Palm simulator will allow you to run an application written for a mobile
device running Palm OS on a PC. Just keep in mind, when using a simulator, you may
see slight differences in the application's behavior in certain classes of error
messages compared to the actual behavior of a target system. For Palm OS
simulators, this difference is due to the fact that simulators are compiled to run on a
PC, and don't attempt to emulate ARM hardware. But even with these differences,
simulators are still useful tools for software development.

An emulator is a software application that goes a step further than a simulator by
attempting to duplicate the exact behavior of a system, including its hardware. Palm
OS emulators (for Palm OS 4 and earlier) emulate 68k-based hardware and run Palm
ROM system images. The focus of an emulator is an exact representation of one
system on another. For this reason, in theory, an emulator is a closer approximation
to actually running an application on a device than a simulator.

The following table lists some differences between simulators and emulators:

13.2.2 Where can I get them?
Palm's device-specific simulators are available for download from PDN on the
device's home page. For example, to find a simulator for the Palm Centro
smartphone, from the PDN home page, navigate to Develop > Devices > Palm
Centro. You'll find the simulator in the Quick Links section of the Centro device page.
Click the link to download the simulator you need. To find all available simulators, go
to the PDN Knowledge Base home page, then from the Category drop-down menu,
select Downloads. Sort the results by Summary, and all available simulators will be
presented on one page alphabetically.

Task Simulator Emulator

Imitate software

Emulate hardware -

Run target device binary -

Represent memory accurately -

Simulators and emulators

 Palm Developer Guide, Palm OS Platform, Rev. J 239

13.2.3 Palm OS simulators and emulators
Generic simulators and emulators for the Garnet 5.4 operating system are provided
by ACCESS at the ACCESS Developer Network website.

At the Palm Developer Network (PDN) website, Palm, Inc. provides simulators and
emulators that include Palm differentiations not included in the ACCESS tools.
Device-specific simulators are available for all current Palm devices, while Palm
provides emulators only for Palm devices running Palm OS 4 and earlier.

Two versions of Simulators are provided for each device: the Release Simulator and
the Debug Simulator.

■ The Release Simulator simulates the production device, where fatal errors are not
displayed to end users.

■ The Debug simulator is a tool for developers that displays all the otherwise hidden
fatal and non-fatal alerts and errors that a production device and the Release
Simulator would skip. Developers should use the Debug Simulator for best
results.

13.2.4 Release Simulator
This section describes the Palm smartphone version of the Palm OS® simulator.

The Palm OS smartphone simulators simulate Treo UI, 5-way navigation, and basic
functionality of the production device. It also allows for network redirecting to your
local host TCP/IP.

When using the Release Simulator, you may see slight differences in behavior and
error messages, but even with these differences the simulator is still a useful
debugging tool, especially because the Release Simulator allows you to load and run
a newly generated PRC quickly.

The Release Simulator application name is PalmSim.exe. Simulators are available
for most Palm products, and can be found on the device’s home page at the Palm
Developer Network (PDN) at http://pdn.palm.com.

13.2.4.1 Using the Release Simulator
To launch an application on the Release Simulator, simply drag and drop the .prc file
of your application onto the Simulator.

Chapter 13 Debugging

240 Palm Developer Guide, Palm OS Platform, Rev. J

The simulator includes several views that make it useful for debugging, such as the
Databases, Heaps, and Events views.

To select a view, use the following steps:

1. Launch the simulator.

2. Right-click the simulator.

3. Select View.

4. Choose Events, Heaps or Databases.

NOTE: To dump a heap, double click it in the Heaps view.

The Gremlins tool is useful for debugging applications that have been created from
scratch, testing random events, and basic functionality testing. To use the Gremlins
tool:

1. Right-click the simulator.

2. Select Gremlins

For more information on the Release Simulator for Palm devices, see the ACCESS
Developer Network at http://www.access-company.com/developers/.

Simulators and emulators

 Palm Developer Guide, Palm OS Platform, Rev. J 241

13.2.4.2 Keystroke equivalents
Simulators do not use device skins. For this reason, it is useful to know how to
simulate the possible keystrokes of a device.

The following table decodes the keystrokes that can be simulated in the Palm
smartphone version of the Palm OS simulator:

Right-Shift Option

Left-Shift Shift

Right-Ctrl Menu

Left-Ctrl Various virtual characters:

Left-Ctrl-A vchrMenu

Left-Ctrl-B vchrLowBattery

Left-Ctrl-C vchrCommand

Left-Ctrl-D vchrConfirm

Left-Ctrl-E vchrLaunch

Left-Ctrl-F vchrKeyboard

Left-Ctrl-I vchrFind

Left-Ctrl-K vchrCalc

Left-Ctrl-N vchrNextField

Left-Ctrl-P vchrPrevField

Left-Ctrl-L chrCarriageReturn

Esc vchrHardPower (radio power)

F1 vchrHard1 (Phone)

F2 vchrHard2 (Calendar)

F3 vchrHard3 (Messaging)

F4 vchrHard4 (Screen power)

End hsChrSymbol (Alt)

Home vchrRockerCenter (application key)

Clear vchrRockerCenter

Left-Arrow vchrRockerLeft

Chapter 13 Debugging

242 Palm Developer Guide, Palm OS Platform, Rev. J

13.2.4.3 Simulator debugging tips
■ Ignore the error, “First-chance exception in PalmSim.exe

(SYSTEM.DLL):0xC0000005: Access Violation”

■ If your interface will not update, drag and drop the .prc file onto the simulator
application again.

■ If the simulator displays the message, “File already in use,” go to the Task
Manager and end all PalmSim.exe processes.

For more information on the Release Simulator for Palm devices, see the ACCESS
Developer Network at http://www.access-company.com/developers/.

13.2.5 Debug Simulator
The Debug simulator is a tool for developers that displays all the otherwise hidden
fatal and non-fatal alerts and errors that a production device and the Release
simulator would skip.

The Debug Simulator is available for most Palm products, and can be found on the
device’s home page at the Palm Developer Network (PDN) at http://pdn.palm.com.

Right-Arrow vchrRockerRight

Up-Arrow vchrRockerUp/vchrPageUp (depending on
focus mode)

Down-Arrow vchrRockerDown/vchrPageDown
(depending on focus mode)

Page-Up hsChrVolumeUp

Page-Down hsChrVolumeDown

F5 Toggle coordinate display in title bar

F7 Sticky-shift (toggles press/release of shift
key)

F8 Sticky-Option (toggles press/release of
option key)

F9 Plug-in/Unplug a simulated charger

F11 Increase simulated battery charge by 1%

F12 Decrease simulated battery charge by 1%

Left-Ctrl-R Soft Reset

Shift-Left-
Ctrl-R

Hard Reset

Left-Ctrl-S Power off (simulates down/up of Esc key)

DebugPrefs

 Palm Developer Guide, Palm OS Platform, Rev. J 243

13.3 DebugPrefs
As discussed in Section 13.2.5 on page 242, on production devices, errors are hidden
from the user for a better user experience. However, for developers, the DebugPrefs
application will expose those errors for accurate debugging information.

The DebugPrefs application is the file DebugPref.prc, which is available in the
ToolsAndUtilities folder of the Palm OS SDK at the Palm Developer Network at
http://pdn.palm.com.

DebugPrefs is an application that runs on the device, which allows you to configure
how you want a device to behave when an error occurs. DebugPrefs has been
updated to version 6.3. The debugging features are discussed in the following
sections.

The DebugPrefs application is useful for:

■ Post-crash debugging

■ Disabling silent resets

13.3.1 Checkbox settings

The DebugPrefs application includes the following checkbox settings:

■ Enable ARM debugger @ Reset - This option puts the smartphone in debugger
mode every time the system resets or crashes. This checkbox is required to be
selected for post-crash debugging. When you see a silent-reset, a crash has
occurred. This behavior indicates that something in your application caused the
device to crash, and you should investigate your code.

One of the following actions will take place when a fatal error occurs:

– The ARM Debugger nub will start using the serial port

– The 68K PACE Debugger Nub will start using the serial or USB port

http://pluggedin.palm.com/
http://pluggedin.palm.com/

Chapter 13 Debugging

244 Palm Developer Guide, Palm OS Platform, Rev. J

■ ARM debugger enabled now - This option is used to enable the ARM debugger.
This box is NOT checked by default, but should be selected to do post-crash
debugging. (For more information on ARM development, refer to the ACCESS
Developer Network at http://www.access-company.com/developers/.)

■ Trigger ARM dbg w/ - This option allows the user to choose a “trigger” that will
drop the user in the debugger. The user no longer needs to switch to DebugPrefs
or press and hold the HotSync® button. This trigger requires the event loop to be
running. The options for the trigger are:

– Cradle (HotSync®)

– Power

– Hard1

– Hard2

– Hard3

– Hard4

■ Password doesn’t lockout debug - Check this option to enable the usual debug
triggers even if you have set a password for a smartphone. This checkbox is
required to be selected for post-crash debugging.

NOTE: This option doesn’t make a smartphone any less secure, because it is
always possible to programmatically launch the debugger if you have
infrared (beaming) access to a smartphone.

■ Still show “safe” fatal errors - If the system determines that an error is not a
major error, then it displays the error. If it determines it is a major error, the system
either automatically resets the smartphone or launches the smartphone in
debugger mode, depending on how the Enable ARM debugger @ Reset setting
is set. This checkbox is required to be selected for post-crash debugging.

■ Enable extensive crash logging - This option enables a higher level of log
functionality.

■ Use USB port, not Serial - This option allows you use the USB port for
debugging instead of the Serial port. This setting must be consistent with the
setting of the debugger you are using on your system.

To do post-crash debugging, make sure that the following basic DebugPrefs features
are selected:

– Enable ARM debugger @ reset

– ARM debugger enabled now

– Password doesn’t lockout debug

– Still show ‘safe’ fatal alerts

DebugPrefs

 Palm Developer Guide, Palm OS Platform, Rev. J 245

13.3.2 Button options

The following options are available by tapping the buttons at the bottom of
the screen:

■ ARM dbg - This button immediately launches the 68K PACE debugger nub.

■ 68K dbg - This button immediately launches the ARM debugger nub.

■ Log - This button shows when the device crashed and the application that caused
it to crash.

NOTE: This feature is particularly useful because, as mentioned earlier, a Palm
smartphone does not display fatal errors when they occur; it simply performs
a soft reset. This log will display the last logged time the error happened.

■ Test - This button simulates one of the following errors:

– ARMCrash_DataAbort

– ARMCrash_BadInstruction

– ARMCrash_PrefetchAbort

– Dynamic Heap Corruption

– ARM DbgMessage

– 68K Crash

– 68K Alert

Chapter 13 Debugging

246 Palm Developer Guide, Palm OS Platform, Rev. J

13.4 Metrowerks CodeWarrior
Metrowerks CodeWarrior for Palm OS v9 allows you to do source debugging on a
Palm OS simulator or on-device debugging on a Palm smartphone. It is also useful
for pre-crash debugging. You can connect CodeWarrior with the device using both
serial and USB connectors.

CodeWarrior, available for Windows and Mac OS, is a complete programming tool
for the Palm OS platform. CodeWarrior is available at the following URL:

http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeId=012726

CodeWarrior is useful for:

■ Setting breakpoints

■ Stepping through or into code

■ Viewing memory

■ Changing variable values while debugging

■ Changing PC values (right-click your application and select “Change Program
Center”

■ Launching your application with different launch codes, such as:

– sysAppLaunchCmdNormalLaunch

– sysAppLaunchCmdFind

– sysAppLaunchCmdSystemReset

■ Visual UI design

NOTE: For more information on launch codes, see the ACCESS Developer Network
at the following URL: http://www.access-company.com/developers/
documents/docs/palmos/PalmOSReference/
AppLaunchCodes.html#1012458.

CodeWarrior cannot be used for post-crash debugging, and it cannot be used to check
CPU registers.

http://www.access-company.com/developers/documents/docs/palmos/PalmOSReference/AppLaunchCodes.html#1012458
http://www.access-company.com/developers/documents/docs/palmos/PalmOSReference/AppLaunchCodes.html#1012458
http://www.access-company.com/developers/documents/docs/palmos/PalmOSReference/AppLaunchCodes.html#1012458

Metrowerks CodeWarrior

 Palm Developer Guide, Palm OS Platform, Rev. J 247

13.4.1 Simulator debugging using CodeWarrior

To debug using CodeWarrior, use the following steps:

1. Select the project settings to build your project object code with symbolic
information:

Settings > 68K Linker > Debugger Info > Generate SYM File

2. Configure the project settings as follows:

Settings > Palm OS Debugging > Connect to > Emulator

3. Launch the Palm OS simulator

4. Load your application and its symbols and run it by selecting Project > Run
(or press Ctrl + F5). CodeWarrior displays a dialog box notifying you that the
application is being loaded to the target.

– Loading the binary - The .prc is loaded onto the simulator when the
debugging session is initiated.

– Loading the symbol - The debugger can only be initiated from the project
build environment (.mcp).

5. Set any breakpoints you need, and begin your debugging session.

6. To debug within your code, select Project > Debug (or press F5).

Chapter 13 Debugging

248 Palm Developer Guide, Palm OS Platform, Rev. J

13.4.2 On-device debugging using CodeWarrior

To debug with CodeWarrior on the device, use the following steps:

1. Select the project settings to build your project object code with symbolic
information:

Settings > 68K Linker > Debugger Info > Generate SYM File

2. Connect via USB or Serial port (USB is faster)

Settings > Palm OS Debugging > Connect to > Device

Device > COM1 or USB (for serial or USB connection, respectively)

NOTE: The Treo 600 smartphone only supports serial debugging

3. Configure the project settings and place the Palm smartphone into Console mode
by pressing Shift + HotSync, or use the following method to choose between
Console and Debug mode:

– Press Option + Shift + Find to open the Find dialog box.

– Press S, and then press Alt.

– The shortcut character appears as an option, usually at the bottom of the
screen.

– Select the shortcut character, enter a period (.), and then press Option-1 or
Option-2 to switch to Debug or Console mode, respectively.

Metrowerks CodeWarrior

 Palm Developer Guide, Palm OS Platform, Rev. J 249

4. Load your application and its symbols and run it by selecting Project > Run
(or press Ctrl + F5). CodeWarrior displays a dialog box notifying you that the
application is being loaded to the target.

– Loading the binary - The .prc is loaded onto the simulator when the
debugging session is initiated.

– Loading the symbol - The debugger can only be initiated from the project
build environment (.mcp).

5. Set any breakpoints you need, and begin your debugging session.

13.4.3 CodeWarrior debugging troubleshooting tips
■ If you are having trouble using the USB cable, make sure you have moved

usbport.dll from c:\WINDOWS\system32 to c:\program files\palmOne (or Palm).
Do NOT just copy the file.

■ If you are having trouble connecting to Code Warrior, check the following items:

– When you are using the serial cable, make sure to select the correct COM or
USB port and baud rate (57600).

– Make sure that the COM or USB port is not currently being used by other
applications

– Make sure that the serial cable is connected to the right COM port.

– Be aware that if the application is large, the debugger will be slow.

If these steps do not work, try the following:

– Shut down CodeWarrior and restart it.

– Reset the device

■ If you see an error saying that a database is already running on the device, make
sure that the application is not running, and delete the existing .prc file if
necessary.

■ To prevent the device from going to sleep, use the following method:

– Press Option+Shift+Find to open the Find dialog box.

– Press S, and then press Alt.

– The shortcut character appears as an option, usually at the bottom of the
screen.

– Select the shortcut character, enter a period (.), and then press Option-3.

■ CodeWarrior cannot be used for post-crash debugging, and it cannot be used to
check CPU registers.

Chapter 13 Debugging

250 Palm Developer Guide, Palm OS Platform, Rev. J

13.5 PalmDebugger

PalmDebugger is a modified version of the PalmDebugger.exe application. It
allows debugging for GCC-complied 68K code in Palm OS 5 and includes some post-
crash debugging ability. The latest version is available as part of the Palm OS SDK in
the folder ToolsAndUtilities. Download it from PDN at http://pdn.palm.com.

To support debugging on Palm smartphones, the PalmDebugger has been updated
to communicate with the Palm OS® PACE and the system core.

PalmDebugger is useful for:

■ Source level debugging

■ Importing .prc and .pdb files

■ Post-crash debugging (using the serial cable only)

■ Viewing memory

■ Listing the database

■ Exporting database files

■ Heap dumps

■ Check CPU registers

PalmDebugger

 Palm Developer Guide, Palm OS Platform, Rev. J 251

13.5.1 Source level debugging
To use PalmDebugger for source level debugging, follow these steps:

1. Build your project object code to generate symbolic information (filename.sym).
Compile your code with a command resembling the following example:

m68k-palmos-gcc -O2 -g -Wall SimpleSMS.o -o Obj/SimpleSMS.sym

For more examples, download the Sample Code from the SDK, available at PDN
at http://pdn.palm.com.

2. Connect your device to the serial or USB cable, then use one of the following
steps:

– To connect to the Palm OS simulator, launch PalmDebugger, select Connection
as Emulator, and then launch the Palm OS simulator.

– To connect to a Palm smartphone, launch PalmDebugger and select
Connection as Serial, and then put the Palm smartphone into Debug or Console
mode using the method described in Section 13.4 on page 246.

NOTE: USB debugging is not supported for Treo 600 smartphones.

3. Install the database or databases that represent your application, and load its
symbols from the Source menu or by using the F8 hot key.

4. Open or load the appropriate .prc, .sym, and .c files. (Ignore the dialog that is
displayed asking to locate the gdbstub.c file by selecting Cancel.)

5. Set any breakpoints you need, and begin your debugging session.

13.5.2 Post-crash debugging
To use PalmDebugger for post-crash debugging and display 68K traces, use the
following steps:

1. Configure PalmDebugger to use the serial port.

2. Make sure your serial port isn't being used by something else. Check HotSync and
Palm OS Debugger.

3. Using the Treo 600 serial cable, connect the Treo 650 serial adapter to the COM
port.

4. In the "Debugger" window, enter the command "att".

NOTE: You may need to retry a few times by shutting and restarting PalmDebugger.
PalmDebugger will return the <pc> message when it is successfully attached.

For more information on post-crash debugging, refer to the Application Note, “Using
PalmDebugger” on PDN.

For more information, refer to documentation on the ACCESS website at:

http://www.access-company.com/developers/documents/docs/devguide/
UsingDebugger.html#997418.

http://pluggedin.palm.com
http://www.access-company.com/developers/documents/docs/devguide/UsingDebugger.html#997418
http://www.access-company.com/developers/documents/docs/devguide/UsingDebugger.html#997418

Chapter 13 Debugging

252 Palm Developer Guide, Palm OS Platform, Rev. J

13.5.3 Common PalmDebugger commands
The following table defines commonly used PalmDebugger commands:

Command Definition

att Attaches a device to the debugger

dm <addr> <numBytes> Reads arbitrary memory addresses

hd 0 Dumps the dynamic heap. (This command is
slow.)

hd 1 Checks the DBcache state.

■ Displays feature pointers and loaded
resources or records. It works very slowly via
serial (takes approximately 45 minutes)

■ Displays labeled chunks that belong to
particular applications:

– D (dirty) vs. d (not dirty)

– M (moveable) vs. m (not moveable)

■ Displays sizes in hexadecimal values.

Help A console command list

il pc-20 40 \bytes Disassembles around the current PC

opened Shows opened databases

Ping Determines if the connection in the console
window is still valid

reg Emulates CPU registers

sc a6 20 Attempts a 68K stack crawl

wh \a pc Identifies the database containing the PC. (This
command is slow).

PalmDebugger

 Palm Developer Guide, Palm OS Platform, Rev. J 253

13.5.4 Using PalmDebugger to import and export files
PalmDebugger may also be used as a tool to import and export files between your
device and your PC.

13.5.4.1 Import <cardNo> <filename>
Run the Import <cardNo> <filename> command in the Console window to copy a
Palm OS database from the PalmDebugger's Device folder to the device. Use this
command when you have built a new version of an application and want to load the
application on to the device for testing.

The basic form of the import command is:

import <cardNo> <filename>

Where <filename> is the name of a file on your local system. By default,
PalmDebugger looks for the named file in the Device sub-directory within the
directory that contains the PalmDebugger application itself. The filename can also be
specified using a relative or absolute path if it's not in the Device directory.

The <cardNo> is always 0, which means, "import the database into the built-in RAM
on the device." For example:

import 0 HTMLLibTest.prc

13.5.4.2 Export <cardNo> <filename>
The export command does the opposite of the import command: it copies a database
from the device to the desktop. This command is also run in the Console window.

The basic form of the export command is:

export <cardNo> <filename>

Where <filename> is the name of the PalmOS database.

The database will be copied to your local system in the standard PRC or PDB file
format. These two file formats are actually identical. PRC is used to indicate resource
databases, and PDB is used to represent record databases.

When it is copied, the database will be named <filename>.prc or <filename>.pdb.
All exported files are placed into the Device sub-directory of PalmDebugger.

Unlike the import command, you may specify a <cardNo> other than 0.

Chapter 13 Debugging

254 Palm Developer Guide, Palm OS Platform, Rev. J

13.5.5 PalmDebugger tips
■ If you cannot use breakpoints, close the PalmDebugger application and open it

again, or reset your device. Your device will not respond to the keyboard or touch
screen until you run your application again.

■ PalmDebugger keyboard shortcuts are the same as those used with CodeWarrior.

■ PalmDebugger heap dumps are useful for:

– Finding memory leaks. A heap dump will display all allocated memory chunks.

– Analyzing memory corruption. If the heap structure if corrupted, a heap dump
will usually report it.

■ Common causes of heap corruption include:

– Buffer overruns and underruns. If you write to a memory location either before
or after the memory chunk, you will corrupt the structure of the heap.

– Memory chunks are sequential, so a buffer overrun corrupts the header for the
next chunk. A buffer underrun corrupts the header of the current memory
chunk.

– Uninitiated pointers that write to a freed chunk of memory or that write to an
unlocked, movable chunk will both cause heap corruption.

■ PalmDebugger CANNOT be used for the following things:

– PalmDebugger cannot be used with CodeWarrior builds while debugging.

– PalmDebugger cannot be used for modifying variables.

– PalmDebugger cannot step out to the next function call

– The CallStack check is not enabled in 68k source-level debugging

For more information on PalmDebugger, see the ACCESS Developer Network at the
following URL:

http://www.access-company.com/developers/documents/docs/devguide/
UsingDebugger.html#995835

http://www.access-company.com/developers/documents/docs/devguide/UsingDebugger.html#995835
http://www.access-company.com/developers/documents/docs/devguide/UsingDebugger.html#995835

Garnet OS Developer Suite

 Palm Developer Guide, Palm OS Platform, Rev. J 255

13.6 Garnet OS Developer Suite

The Garnet OS Developer Suite (also called the Palm OS Developer Suite, or PODS)
by ACCESS is an integrated development environment that supports Simulator and
on-device debugging. Download it from the ACCESS Developer Network at
http://www.access-company.com/developers/.

The Garnet OS Developer Suite is useful for:

■ 68k source code debugging.

■ Visual UI design

■ Checking variables, memory, registers and databases

To connect to the Palm Simulator, navigate to Window > Preferences > Palm OS
Development > Target Environment Setting > NEW.

For more information on debugging with the Garnet OS Developer Suite, see the
ACCESS Developer Network at http://www.access-company.com/developers/.

http://www.access-company.com/developers/

Chapter 13 Debugging

256 Palm Developer Guide, Palm OS Platform, Rev. J

13.7 Resets
While developing and testing applications, there are often times when devices
display strange behavior, or simply require a refresh. For this reason, it is important
to understand the different kinds of resets that you can perform on Palm devices
running Palm OS.

There are four types of resets: soft resets, warm resets, hard resets, and factory
resets. Different situations call for different resets. This section will detail the
difference between these four types of resets, explain when to use each one, and
provide instructions on how to perform them.

13.7.1 Soft Reset
Performing a soft reset on a Palm device is similar to restarting a PC. It is essentially
“rebooting” the system. A soft reset wipes the RAM (the dynamic heap and the DB
Cache) clean.

A soft reset is useful in the following situations:

■ If the device is not being responsive to button presses or screen taps.

■ If you were using the debugger and are now finished.

■ If you're seeing strange behavior that you think might be due to previous tests
you've run on the device.

Basically, any situation where restarting your desktop computer might help can also
be applied to your Palm device with a soft reset.

To perform a soft reset, remove the cover from the back of the device, remove the
battery for a few seconds, then replace the battery. Certain Palm devices also have a
reset pin, which you can press instead of removing and reinserting the battery with
the same result.

13.7.2 Warm Reset
A warm reset, also known as a system reset, tells the system to restart without
loading any system extensions.

A warm reset can be helpful in these situations:

■ If you've already tried a soft reset and that did not resolve the issue. For example,
if your device is stuck in a reset loop.

■ If you're seeing a warning of low memory conditions, which suggests that you
should delete some items and make some space.

To perform a warm reset, press and hold the Up button on the 5-way navigator on the
device, then press the reset pin, or remove and reinsert the battery.

13.7.3 Hard Reset
The purpose of a hard reset is to restore the device to its default state prior to a
customer's use. This means that any applications, data, settings, or preferences will
be erased when a hard reset is performed. (Make sure to back up all data before hard
resetting your device.)

Resets

 Palm Developer Guide, Palm OS Platform, Rev. J 257

A hard reset not only wipes the RAM clean like the soft reset, but it also erases the
storage heap that is in the NAND flash. (For more information on NAND memory,
refer to the NVFS API section of the document Palm Developer Guide, Palm OS
Platform, which is part of the SDK download.)

For a developer, this reset can be a useful testing tool, as it allows you to test the
behavior of your application on a “clean slate” by undoing any changes that
development caused to the original state of the device.

The steps to performing a hard reset are different on different devices. For
instructions, refer to the Palm Support Knowledge Library at the following URL:

http://kb.palm.com/SRVS/CGI-BIN/WEBCGI.EXE/,/
?St=49,E=0000000000924981633,K=2784,Sxi=8,Case=obj(42094)

13.7.4 Factory Reset
A factory reset reformats the device and is designed to remove all data so that it
cannot be retrieved. This type of reset provides increased privacy of data in
comparison to a hard reset, so if your device is changing hands, you should definitely
perform a factory reset.

For instructions, see the following Palm Support Knowledge Library article:

http://kb.palm.com/SRVS/CGI-BIN/WEBCGI.EXE?New,Kb=PalmSupportKB,
CASE=15574

http://kb.palm.com/SRVS/CGI-BIN/WEBCGI.EXE/,/?St=49,E=0000000000924981633,K=2784,Sxi=8,Case=obj(42094)
http://kb.palm.com/SRVS/CGI-BIN/WEBCGI.EXE?New,Kb=PalmSupportKB,CASE=15574

Chapter 13 Debugging

258 Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

 Palm Developer Guide, Palm OS Platform, Rev. J 259

PART IV

Style Guide

This part of the guide provides guidelines for the “look and feel” of applications that
use software components in the Palm OS® SDK.

260 Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

 Palm Developer Guide, Palm OS Platform, Rev. J 261

CHAPTER 14

14. Style Guide

This chapter outlines the style guidelines to follow when developing applications that
work with the Blazer web browser.

14.1 Designing pages for the Blazer® web browser
Available on:
■ LifeDrive™ mobile manager

■ Centro™ and Treo™ smartphones

■ Tungsten™ T5 and Tungsten™ E2 handhelds

Although the Blazer web browser’s table unrolling technology does a good job of
adapting websites for mobile devices, advance planning can reduce the translation
and download time and ensure that results are as expected. This section covers the
various factors that website designers and programmers should take into account
when designing web pages.

14.1.1 General rules for web page design
Here are some general rules that apply when designing websites for mobile devices:

■ Make content accessible within one or two links.

Because the user is typically using a slow, costly connection, it is important that
the information the user is trying to access be easily available within one or two
navigational moves.

■ Keep relevant content and links within the viewable area.

■ Personalize and prefill forms whenever possible.

■ Use as much screen space as possible without cluttering the screen.

■ Keep graphics use to a minimum. When you have to use graphics, keep them
simple and small.

■ Keep the page size small, preferably under 4KB to 6KB.

■ Keep the page simple. Limit the use of JavaScript, and don’t use frames or
plug-ins. While JavaScript is supported, most JavaScript runs slower on the
Blazer web browser than on other handheld browsers due to memory and CPU
limitations. For simple JavaScript this is not noticeable, but the use of more
elaborate JavaScript may create noticeable delays.

Chapter 14 Style Guide

262 Palm Developer Guide, Palm OS Platform, Rev. J

Due to the various restrictions on designing web pages for mobile devices, a website
should contain a parallel “mobile” version. The full website can take advantage of all
the web technologies, while the mobile site is a slimmed- down version designed to
support mobile devices. For example, the Palm website contains a page that is
designed for mobile devices: http://mobile.palm.com.

Web developers can have their web server automatically load the appropriate page
based on the user agent of the browser. For information about the user agent for the
Blazer web browser, see Section 14.1.5.2 on page 273.

14.1.2 Screen resolution
Mobile devices have a screen size that is much smaller than a desktop screen’s
resolution. Specifications for Palm devices are as follows:

■ On low resolution Treo 600 smartphones, the full-screen resolution is 160 x 160
pixels, and the available space in the browser, due to the toolbar and scroll bar
dimensions, is 155 x 145 pixels.

■ On high-resolution Treo 650 smartphones and later, the full screen resolution is
320 x 320 with 16-bit color that displays over 65,000 colors. The screen is 186
physical dots per inch (DPI) and has a horizontal and vertical pitch of 136.5
micrometers.

■ On high-resolution Tungsten™ handhelds the resolution is 320 x 320, or 320 x 480,
depending on the current state of the Graffiti area, and also includes with 16-bit
color that displays over 65,000 colors.

Blazer 4.0 web browser also has a URL bar that users can choose to display or hide.
When it is displayed, it takes space away from the current web page display area.
Designers should take these dimensions into account when creating images, tables,
lists, and other components of web pages. Developers who want to alter their page
based on the current screen resolution should note that the current screen resolution
is included in the User Agent. See Section 14.1.5.2 on page 273 for more information.

14.1.3 Connection speed
Users can connect to the Internet at several speeds. The speeds available depend on
the type of network the user is accessing and the device they are using to connect
(CSD, 1xRTT, GPRS, EDGE, and EvDO). Field-tested speeds can range from 10kbps
(CSD dial-up) to over 150kbps (EDGE). EvDO connection speed ranges from 400kbps
to 600kbps (based on 1MB FTP file downloads). Website designers should keep in
mind that different users can connect using a wide range of speeds and should
optimize their web pages to load appropriately.

For information on detecting EvDO vs. 1xRTT connections, see Section 8.4.1 on page

112.

14.1.4 Content
In Optimized mode, the Blazer web browser typically reformats web pages into
a small, screen-friendly format. Sites that have a simple layout with minimal
tables and graphics have a good chance of being displayed properly after the
reformatting. The sections details the factors to keep in mind when designing
your web pages.

Designing pages for the Blazer® web browser

 Palm Developer Guide, Palm OS Platform, Rev. J 263

14.1.4.1 Page titles
The Blazer web browser does not display web page titles in web page view. To view
the title of a web page, users must open the Page Properties dialog box, as shown in
the following figure. The page title is used to prepopulate the bookmark description
or title field when adding a bookmark.

14.1.4.2 Content optimized for the Blazer® web browser
You can also insert the following tag into the HEAD section of a web page to minimize
the amount of reformatting that the Blazer web browser does:

<META name="HandheldFriendly" content="True">

This tag tells the Blazer web browser to render tables without any special
reformatting. If this tag is not present, tables may be unrolled or reformatted. Also,
if this tag is present, Blazer 4.0 displays the content in one pass instead of the usual
two-pass rendering method.

14.1.4.3 Embedded audio playback
The Blazer 3.0 and 4.0 web browser supports embedded audio playback using the
<OBJECT> tag. The <BGSOUND> and <EMBED> tags are not supported. For instance:

"<object data="oscar.mid" type="audio/midi" width="0" height="0" ></object>"

loads and plays the MIDI file oscar.mid while the current page is displayed.

All devices with Blazer 3.0 or Blazer 4.0 loaded in ROM support embedded MIDI.
Some devices may also support embedded AMR and/or embedded QCELP.

Chapter 14 Style Guide

264 Palm Developer Guide, Palm OS Platform, Rev. J

14.1.4.4 Streaming embedded content in Blazer® 4.5
The Blazer 4.5 web browser supports embedded content playback using the <EMBED>
and <OBJECT> tags. To do so, Blazer 4.5 searches web pages for embedded objects.
If it finds an <EMBED> or <OBJECT> tag on the page with a MIME-type that an
application is registered for, then the browser will display a Play button, as shown:

Links are then passed to the streaming application via the Exchange Manager when
a user clicks a link.

Streaming content may also be presented as a direct link. If an application registered
for streaming the type of content, the user will be presented with a dialog box that
allows the user to choose whether to play the content, save it to the device, or save
it to the card, as shown:

Once content is downloaded to the device, if there is no application registered to
display the content, the user will see the following:

Designing pages for the Blazer® web browser

 Palm Developer Guide, Palm OS Platform, Rev. J 265

The following code is an example of an <EMBED> tag that the Blazer 4.5 browser will
support:

<object id="MediaPlayer"

classid="CLSID:22d6f312-b0f6-11d0-94ab-0080c74c7e95"

codebase="http://activex.microsoft.com/activex/controls/mplayer/en/
nsmp2inf.cab#Version=6,4,5,715"

align="baseline" border="0"

type="application/x-oleobject">

<param name="FileName" value="http://mediaframe.yahoo.com/
buildlist.asp?p=movies&f=1808624572&=Sony%20Pictures%20Classics&type=t&id=1349284-
145632&m=wmv&r=700&l=SAV&b=e18qn9911a2ga428e61cf">

 <!-- Embedded Microsoft Media Player Object for Netscape Navigator. -->

<embed src="http://mediaframe.yahoo.com/
buildlist.asp?p=movies&f=1808624572&=Sony%20Pictures%20Classics&type=t&id=1349284-
145632&m=wmv&r=700&l=SAV&b=e18qn9911a2ga428e61cf"

 align="baseline" border="0"

 width="320" height="298"

 type="application/x-mplayer2"

 pluginspage="http://www.microsoft.com/isapi/
redir.dll?prd=windows&sbp=mediaplayer&ar=media&sba=plugin&"

 name="MediaPlayer">

 </embed>

</object>

Chapter 14 Style Guide

266 Palm Developer Guide, Palm OS Platform, Rev. J

14.1.4.5 Link protocol types
You can use RTSP or HTTP protocol links in an application to link to streaming
content:

■ RTSP - Using RTSP links, an application will redirect the user immediately to the
registered streaming content. The user will not be presented with a dialog or a
play button.

■ HTTP - Using HTTP links, if an application is registered for streaming the type of
content to be downloaded, an application will present a dialog box that allows the
user to play the content, save it to the device, or save it to the card. If no streaming
application is registered to handle the MIME-type or file extension, an application
will present only the save option.

Important notes on Blazer® 4.5
■ The Blazer 4.5 browser does not support a file location being sent via JavaScript

post rendering.

■ The Blazer 4.5 browser will not display any customized playback buttons. It will
use its own Play button, shown previously.

14.1.4.6 File upload
Blazer 4.0 and later has limited file upload support. Blazer only supports uploading
files from an expansion card; it does not currently support any uploading from Palm
OS main memory. When Blazer is rendering a page with a form containing the file
upload tag, Blazer displays a single-line text field. To upload a file, the user must type
in the fully-qualified path to the file on the expansion card to be uploaded. (In the
future, a Browse button may be added that allows the user to browse for the file to
be uploaded.)

On the LifeDrive™ mobile manager, a user can upload files from Palm OS main
memory. On devices with the file browser program and Blazer 4.1 and later, the single
text line is replaced with a browser button that allows a user to utilize the file browser
program to select a file to upload from anywhere the file browser program can
explore. File uploads have succeeded up to about 1MB; in general, a 500K upload
will succeed.

14.1.4.7 mailto command
The Blazer web browser does support the mailto command to send email.

Typically on desktop systems, the web browser launches an email application to send
mail when a mailto command is encountered. On devices, it is not guaranteed that
a mail application is installed. If an email application is installed, a mailto command
launches the default email application as defined in the Defaults panel in Prefs.

For dialing telephone numbers, see the tel: and phoneto: tag discussions in the
Section 14.1.5.1 on page 273 section.

Designing pages for the Blazer® web browser

 Palm Developer Guide, Palm OS Platform, Rev. J 267

14.1.4.8 Multipass rendering
Unless the HandheldFriendly tag is present, Blazer 4.0 and later renders each page
in two passes. In the first pass, all the text on the page is displayed. In the second
pass, images are downloaded and JavaScript is downloaded and executed. By
making the text immediately available to the user, the site appears more responsive
and the user can read content and select links before the entire page has
downloaded. There are several things a content developer can do to ensure that a
page is more usable during the first pass:

■ Minimize the use of images, especially images with text.

Because images are not displayed until the second pass, if a site's content is
image-based the user has to wait longer before interacting with the page.

■ When images are used, include descriptive ALT tags.

During the first pass the text of the ALT tag is displayed in place of the image.

■ Do not use JavaScript in links.

Usually, when a user selects a link during the first pass, the link is immediately
activated. If the link includes JavaScript (and JavaScript is enabled), the browser
cannot follow the link until the second pass because the JavaScript engine is not
available until the second pass is complete. Thus, if the user clicks on a link with
JavaScript during the first pass, an error message is displayed and the link is
not activated.

14.1.4.9 Forms
The Blazer web browser supports standard HTML and WML forms, including text
boxes, radio buttons, check boxes, text inputs, select lists, multiple selects, and drop-
down menus. However, there are some guidelines to follow when you design forms
for mobile devices:

■ Make sure that the form’s open and close tags (<form> and </form>) are not
contained inside a table. Form input may safely be placed inside table cells.

■ Text input is supported, but the maximum length of the text is the length of the
text input dialog box.

14.1.4.10 Tables
In Optimized mode, the Blazer web browser supports tables by reformatting
or unrolling the table so that it fits on the small screen of a mobile device. The table-
rendering engine is optimized for displaying simple text-based tables. Web page
designers should avoid using one-pixel spacer images for precise content control,
because the images and subsequent reformatting may not look ideal on a
mobile device.

Table width attributes are not supported. However, table cell width attributes are
supported. To widen tables, change the width attribute of the table cells. To preserve
the width on the client display, use the HandheldFriendly tag. For more information,
see Section 14.1.4.2 on page 263.

Chapter 14 Style Guide

268 Palm Developer Guide, Palm OS Platform, Rev. J

For example, the following HTML code displays a table with a table width of 140:

<table border="1">
<tr>

<td width="140" colspan=5>abcdef</td>
</tr>
<tr>

<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>

</tr>
</table>

The table appears on a desktop web browser as follows:

This same HTML code is displayed in the Blazer web browser without the extra
spacing if the HandheldFriendly tag is not included:

To have the Blazer web browser display the table as intended, include the
HandheldFriendly tag within the HEAD section of the web page, as follows:

<META name="HandheldFriendly" content="True">

This causes the device to display the table with the width tag enabled, as shown
in the following figure:

a b c d e f

1 2 3 4 5

Designing pages for the Blazer® web browser

 Palm Developer Guide, Palm OS Platform, Rev. J 269

14.1.4.11 Images
Using images on a website can enhance the presentation of content and the user
experience. At the same time, the use of images slows down the web browsing
experience. Therefore, it's important to carefully consider which images to display
on mobile devices.

All images pass through an imaging processor in the Blazer web browser client
that scales down any image that exceeds the current screen size. The bit-depth of
the image is also adjusted to match the device’s image display settings.

When designing images for mobile devices, keep the following in mind:

■ Image size should be very small (under 4KB).

■ Use only a few graphics per page to reduce the load time.

■ Use images that are high contrast for easy readability.

■ Use ALT tags to display text content while images download.

Here is what is displayed while the image is loading:

And here is what appears after the image has finished loading:

Chapter 14 Style Guide

270 Palm Developer Guide, Palm OS Platform, Rev. J

14.1.4.11.1 Images with text

Avoid using images in place of text. Unnecessary images add to the total download
time for each page. If the Blazer web browser needs to scale the image, the text may
become unreadable. The following images show how a text image can look fine on
a desktop browser but can become unreadable when scaled and displayed in the
Blazer web browser.

Designing pages for the Blazer® web browser

 Palm Developer Guide, Palm OS Platform, Rev. J 271

14.1.4.11.2 Horizontal header images

Many websites use a horizontal header image for navigation purposes. Typically, this
image consists of many smaller images that are formatted in a table with zero- length
borders.

On a desktop browser, such an image is displayed appropriately. The Blazer web
browser, however, typically reformats such a page so that the images are stacked
vertically. The following images demonstrate this behavior.

Header images on a desktop browser:

The same images on the Blazer web browser:

You can clean up the web page by removing spacer images and inserting the
HandheldFriendly tag at the beginning of the page. The next figure shows the
updated page without spacer images in the table. The second figure shows the page
in the Blazer web browser without the HandheldFriendly tag. Because the spacer
images are not present, the browser displays the image in a more readable format.
The third figure shows the same page with the HandheldFriendly tag present. This
tag instructs the Blazer web browser not to reformat the tables. As a result, the table
is displayed as intended. The Blazer web browser provides horizontal scroll bars to
allow the user to view the entire image.

Chapter 14 Style Guide

272 Palm Developer Guide, Palm OS Platform, Rev. J

14.1.4.11.3 Supported image formats

The Blazer 3.0 web browser supports the following image formats:

■ GIF

■ JPEG

■ PNG

■ Animated GIF

■ WBMP

■ BMP (Blazer 4.0 web browser)

■ PJPEG

14.1.4.12 Unsupported content
While the Blazer web browser supports most of the HTML 3.2 specification, there are
certain unsupported elements. Some of the additional web technologies that are not
supported in the Blazer web browser include:

■ Java applets

■ WMLScript

■ Animations (Macromedia Flash)

■ Audio, although the Blazer web browser can download an audio file to be played
by an application that can handle the audio format

■ Browser Plug-Ins

When the Blazer web browser encounters an unsupported element, it ignores the
associated code when displaying the web page. In most cases, the user experiences
the web page with reduced functionality. If the website requires the unsupported
technologies to view the information, the Blazer web browser users will not be able
to use the website.

Designing pages for the Blazer® web browser

 Palm Developer Guide, Palm OS Platform, Rev. J 273

14.1.5 Working with the Blazer® web browser
This section discusses topics that are specific to the Blazer web browser and
Palm OS® software. You should make note of these issues when implementing web
pages that you have optimized for use with the Blazer web browser.

14.1.5.1 Palm OS™ software integration tags
In general, all HTML files must begin with the <html> tag or the Blazer web browser
may not recognize them as HTML.

Blazer Web Browser 3.0 and 4.0 do not support date picker and time picker. Support
may be added in a later release of the Blazer web browser.

14.1.5.2 Browser identification with user agent string
As part of communication to a web server, web browsers send out a string indicating
what type of browser is accessing the server. This is referred to as the user agent
string.

The Blazer 3.0 web browser user agent string is:

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows 95; PalmSource;
Blazer 3.0) 16;160x160

The Blazer 4.0 web browser user agent string is:

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows 98; PalmSource/
hspr-H102; Blazer/4.0) 16;320x320

The Blazer 4.5 web browser user agent string is:

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows 98; PalmSource/
Palm-D052; Blazer/4.5) 16;320x320

In the user agent strings above, hspr-H102 for Blazer 4.0 and Palm-D052 for Blazer 4.5
respectively indicates which Palm device the browser is running on; different devices
return different strings.

Also, the current screen size is included, so if the user changes the state of the Graffiti
area, the user agent string is updated to match the screen size. For these reasons, you
should not search for an exact match when checking for the presence of the Blazer 4.0
web browser. Instead, simply check to see if the user agent string contains the
substring Blazer.

Web developers can use this header to send the version of a web page optimized for
display by the Blazer web browser.

Chapter 14 Style Guide

274 Palm Developer Guide, Palm OS Platform, Rev. J

14.1.5.3 Cookies
The Blazer web browser contains support for cookies. Typically, website developers
use cookies to store a small amount of information about a user’s ID or profile,
website personalization, and so forth. As with any web browser, users can have the
Blazer web browser not accept cookies or clear out the cookie store. Cookies are
stored on the local Palm OS device.

The Blazer web browser contains full support for the SET-COOKIE header. The only
restriction is that the value attribute must not exceed 2000 bytes. Cookies with a
value attribute larger than 2000 bytes may be rejected. Other types of cookie headers
are not supported.

If a cookie has an expiration date, then it is a persistent cookie. If there is no
expiration date, it is a session cookie. Session cookies are kept post-session so that
a user can get back into their previous session as long as it is within the time limit
described below.

14.1.5.4 Session handling
On a desktop browser, a session cookie persists until the user quits the web browser.
On a Palm OS device, only one application can be active at any given time. To take
into account that a user may temporarily switch to another application while using
the Blazer web browser, the system ends a session 20 minutes after the Blazer web
browser exits. (This time may vary based on the wireless service provider.)

14.1.5.5 Security
The Blazer web browser uses the standard Palm OS security libraries—the same
libraries that are shipped with every version of Palm OS 5.2.1 and later. The Blazer
web browser incorporates 128-bit SSL 3.0 encryption technology to ensure that
visiting any site with a device is as secure as browsing from a desktop. The 128-bit
encryption uses the RC4 algorithm and RSA-based key exchange. It also incorporates
RSA-based digital signature verification, MD5 and SHA-1 secure hash algorithms,
support for X.509 certificates, and an intuitive indication of a secure connection by
a lock icon in the toolbar or URL bar.

14.1.5.6 Caching
The Blazer web browser includes a web page cache to improve performance. If a
page requires a regular refresh, or should not be cached, the web server must send
the appropriate standard HTTP cache control headers in the HTTP response.

14.1.5.7 Downloads
The Blazer 4.0 web browser limits downloads to 2MB. On the LifeDrive™ mobile
manager with the Blazer web browser 4.1 and later, much larger downloads are
possible. If an item is 2MB or less and there is sufficient DBCache, a standard
download occurs. If an item is larger than 2MB or there is insufficient DBCache, the
user sees a dialog stating that Blazer is writing to the internal drive. The Blazer web
browser writes a VFS file directly to disk rather than using the Exchange Manager.

Designing pages for the Blazer® web browser

 Palm Developer Guide, Palm OS Platform, Rev. J 275

14.1.6 Testing your website
Designing your web pages will most likely be an iterative process. Test your websites
early and frequently to ensure that you are able to achieve the intended design and
layout. The following sections contain a few pointers to help you successfully test
your website’s content.

14.1.6.1 Multiple devices
If you intend your content to be accessible through a variety of devices, be sure to
test your website with as many of those devices as possible during the development
process. Areas you should look at in particular are device memory and screen size.

14.1.6.2 Refreshing content
Because the Blazer web browser uses cached pages on a device to provide quick
access to frequently viewed content, constant updates to a web page during
development may not be visible on the device. Set the cache size to zero during
testing. During development, you should use the Clear button in Preferences to clear
out the cache and use the Page -> Refresh menu command to make sure the current
page is loaded. Images are typically refreshed when the page is refreshed. If images
are not being updated in the Blazer web browser, the cache should be cleared out or
the image file name should be changed.

14.1.7 International support
The Blazer web browser client supports the Palm OS character set. This character set
is similar to the ISO-8859-1 character set. The Palm OS character set allows support
for most Western European characters. The Blazer web browser application has also
been localized into the following European languages:

■ English

■ French

■ Italian

■ German

■ Spanish

■ Brazilian Portuguese

14.1.7.1 HTML encoding
The Blazer web browser supports web pages that are encoded using the ISO-8859-1
and UTF-8 character formats. This allows Western European languages to be
displayed properly on the Blazer web browser client. All HTML files must begin with
the <html> tag or they may not be recognized as HTML.

Web pages that are encoded in UTF-8 must indicate so by including one of the
following tags:

Content-type HTTP Header:

Content-Type: text/html; charset=utf-8

HTTP-equiv META Tag:

<META http-equiv="content-type" content="text/html; charset=utf-8"\

Chapter 14 Style Guide

276 Palm Developer Guide, Palm OS Platform, Rev. J

14.1.7.2 WML encoding
WML content is typically encoded in UTF-8 format. WML pages that are encoded
in the ISO-8859-1 format must indicate so by including one of the following tags:

Content-type HTTP Header:

Content-Type: text/vnd.wap.wml; charset=iso-8859-1

HTTP-equiv META Tag:

<META http-equiv="content-type" content="text/vnd.wap.wml; charset=iso-
8859-1"\

XML Tag:

<?xml version="1.0" encoding="iso-8859-1"\

14.1.7.3 Accept headers
The Blazer web browser client supports Accept HTTP headers. The client sends this
header to the web server based on the languages the client supports. You can use this
header to determine what type of content to deliver to the device.

The Blazer Web Browser 3.0 Accept headers for an English ROM appear as follows:

Accept: text/html, application/vnd.wap.xhtml+xml, application/xhtml+xml;
profile="http://www.wapforum.org/xhtml", image/gif, image/jpeg, image/
pjpeg, */*
Accept-Language: en, *;q=0.8

For Blazer 4.0 and later, the Accept header is similar to the Blazer 3.0 header, except
that it also includes every type currently registered with the Palm OS Exchange
Manager.

(The Accept-Language header varies based on the current language selected upon
setup of the device.)

Accept-Encoding: deflate, gzip

14.1.8 List of acronyms
The following table lists web browser and Internet acronyms.

Acronym Definition

cHTML Compact HTML. A subset of HTML for mobile devices. Primarily
used in i-Mode devices.

ECMA European Computer Manufacturers Association.

GIF Graphics Interchange Format.

HDML Handheld Device Markup Language. An old format used for
web-enabled phones. This is no longer used.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

ISO International Organization for Standards. The name is derived
from the Greek word iso, meaning “equal.”

Designing pages for the Blazer® web browser

 Palm Developer Guide, Palm OS Platform, Rev. J 277

14.1.9 Palm OS® integration tags
In general, all HTML files must begin with the <html> tag or the Blazer web browser
may not recognize them as HTML.

The Blazer web browser supports several tag attributes that extend HTML support for
Palm OS devices, as shown in the following table.

JPEG Joint Photographic Experts Group.

PNG Portable Network Graphics.

TCP/IP Transmission Control Protocol/Internet Protocol.

UCS Universal Character Set.

UTF UCS Transformation Format.

WAP Wireless Application Protocol.

WBMP Wireless Bitmap. A graphic format optimized for wireless devices.

WML Wireless Markup Language.

XHTML Extensible HTML. A cross between HTML and XML.

XML Extensible Markup Language.

Acronym Definition

Keyword Description

HandheldFriendly This attribute for the META tag tells the proxy server that the
web page has been specifically designed for small screens.
The proxy server tries to render the tables as close to
specification as possible. Example:

<META name="HandheldFriendly" content="True">

Palm This keyword is used in the HREF attribute to launch a specific
application on the device. Blazer web browser exits and the
specified application becomes the active application.
Example:

Memo Pad

Palmcall This keyword is similar to the Palm keyword except that
Blazer web browser sublaunches the specified application.
Once the application exits, the user returns to Blazer web
browser. For example:

Flipper

Parameters can also be passed into the application using
the sysAppLaunchCmdURLParams launch code. For more
information on this and the palm and palmcall tags, refer to
the following tutorial on the Palm OS developer website:

www.palmos.com/dev/tech/webclipping/tutorials/

tutorial_palm.html

http://www.palmos.com/dev/tech/webclipping/tutorials/tutorial_palm.html
http://www.palmos.com/dev/tech/webclipping/tutorials/tutorial_palm.html

Chapter 14 Style Guide

278 Palm Developer Guide, Palm OS Platform, Rev. J

phoneto: and tel: These keywords are equivalent and are used in the HREF
attribute to dial a specific phone number.

Blazer web browser exits and the phone application becomes
the active application when these keywords are used.

Examples:

Jenny and Empire

file: This keyword is used in the HREF attribute, in the URL bar, and
in the Open URL dialog box to access browser content stored
locally on an expansion card. A network connection is not
required when accessing content using file:///.

Note that the syntax always includes three slashes after
file:

Blazer 3.0 web browser supports the following syntax:

file://dir1/dir2/file.txt

In this example, Blazer 3.0 web browser would attempt to
open the file file.txt located on the expansion card in
directory /dir1/dir2.

In addition to the Blazer 3.0 syntax, Blazer 4.0 web browser
includes support for an additional syntax that handles
devices with multiple expansion cards better, such as the
Tungsten T5 handheld.

An example of the additional syntax is:

file:///volname/dir1/dir2/file.txt

In this example, Blazer 4.0 would locate the expansion card
named volname, and then open file file.txt in directory /dir1/
dir2 on that expansion card.

Keyword Description

Gadgets

 Palm Developer Guide, Palm OS Platform, Rev. J 279

14.2 Gadgets
In the Phone application on Palm smartphones, there is a fixed position for the
system gadgets. For third-party applications to be consistent with the Phone
application, they should position the system gadgets in the same location. We have
included instructions for placement of the gadgets based on the Phone application.

14.2.1 Required headers and libraries
The PmSysGadgetLibrary is required to use the gadgets. This library contains the
system Battery, Signal, and Bluetooth® wireless technology gadget implementation.
It includes the following header files:

■ 68K/Libraries/PmSysGadgetLib/PmSysGadgetLib.h

■ Common/Libraries/PmSysGadgetLib/PmSysGadgetLibCommon.h

The header file PmSysgadgetlibCommon.h has changed for Centro smartphones. The
enumerated type PmSysGadgetBtStatusTypeEnum includes the following item, which
indicates Bluetooth radio status:

kIndicatorBtConnectStereo /**< Connected stereo **/

14.2.2 Overlapping gadgets in Treo™ 680
In Treo 680, support has been added to PmSysGadgetLibrary for overlapping gadgets.
If a gadget is defined with the same boundaries as an existing gadget, it will be given
a lower priority than the previously defined gadget, and will only be displayed if the
other gadget is not visible.

14.2.3 How to include the Battery gadget
To include the Palm smartphone Battery gadget in an application form:

1. Add a gadget to the application form at position (304, 0) for 320 x 320 resolution
for a Treo 650, Treo 680, Treo 700p, Treo 755p, or Centro smartphones. Use half
these dimensions for a Treo 600 smartphone.

Because the system determines the height and width of the gadget, the width and
height specified in the rcp/rsrc file will not matter.

2. In the application form event handler for frmOpenEvent, add the following code:

PmSysGadgetStatusGadgetTypeSet (gPmSysGadgetLibRefNum
 frmP,
 <YOUR_BATTERY_GADGET_ID>,
 pmSysGadgetStatusGadgetBattery);

Updates and events associated with the Battery gadget are handled automatically.

Chapter 14 Style Guide

280 Palm Developer Guide, Palm OS Platform, Rev. J

14.2.4 How to include the Signal gadget
To include the Signal gadget in an application form:

1. Add a gadget to the application form at position (278, 0) for 320 x 320 resolution
for a Treo 650, Treo 680, Treo 700p,Treo 755p, or Centro smartphones. Use half
these dimensions for a Treo 600 smartphone. Because the system determines the
height and width of the gadget, the width and height specified in the rcp/rsrc file
will not matter.

2. In the application form event handler for frmOpenEvent, add the following code:

PmSysGadgetStatusGadgetTypeSet (gPmSysGadgetLibRefNum
 frmP,
 <YOUR_SIGNAL_GADGET_ID>,
 pmSysGadgetStatusGadgetSignal);

Updates and events associated with the Signal gadget are handled automatically.

14.2.5 How to include the Bluetooth® wireless technology gadget

NOTE: The Treo 600 smartphone does not include Bluetooth wireless technology.

To include the Bluetooth wireless technology gadget in an application form:

1. Add a gadget to the application form at position (260, 0) for 320 x 320 resolution
for a Treo 650, Treo 680, Treo 700p, or Treo 755p smartphone. Use half these
dimensions for a Treo 600 smartphone. Because the system determines the height
and width of the gadget, the width and height specified in the rcp/rsrc file will not
matter.

2. In the application form event handler for frmOpenEvent, add the following code:

PmSysGadgetStatusGadgetTypeSet (gPmSysGadgetLibRefNum
 frmP,
 <YOUR_BLUETOOTH_GADGET_ID>,
 pmSysGadgetStatusGadgetBt);

Updates and events associated with the Bluetooth gadget are handled automatically.

 Palm Developer Guide, Palm OS Platform, Rev. J 281

PART V

Hardware Developers Kit

This part of the guide provides details on how to develop hardware peripherals for
Treo™ 650 smartphones and later, as well as for Tungsten™ T5 and Tungsten™ E2
handhelds.

282 Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

 Palm Developer Guide, Palm OS Platform, Rev. J 283

CHAPTER 15

15. Multi-connector
Specifications

This chapter defines the interfaces and interactions of the Palm® expansion Multi-
connector, also known as the Athena connector, and its surrounding circuits and
controlling software.

15.1 Overview
Available on:
■ Centro™ and Treo™ smartphones

■ Tungsten™ T5 and Tungsten™ E2 handhelds and LifeDrive™ mobile managers

This chapter specifies the electrical and software interface characteristics of Palm’s
Multi-connector. These characteristics include sets of various charging, cradle, and
cable configurations, but from a handheld or smartphone perspective the electrical
specification and systems software requirements are consistent across multiple
devices. Specific devices may not, however, implement all of the features of the
Multi-connector.

The Multi-connector supports the following features:

■ Charging power from an external adapter with adapter detection ability

■ Universal Serial Bus (USB)

■ Serial communications (no flow control, logic levels)

■ Dedicated HotSync® technology interrupt

■ Power out

■ Stereo headphone-level output

■ Peripheral detection

Chapter 15 Multi-connector Specifications

284 Palm Developer Guide, Palm OS Platform, Rev. J

The Multi-connector interface supports interaction with the following devices:

■ USB HotSync® cables and cradles

■ Other serial devices

Due to serial peripheral detachment detection requirements, a device cannot
be created that employs automatic serial peripheral detachment detection and
utilizes the USB VBUS line for USB charging, signaling, or connections. Any
device requiring both serial peripheral detection and USB functionality cannot
automatically detect detachment of the peripheral through the normal serial
peripheral detachment mechanism. Detachment for this situation must be
handled through a nonstandard mechanism, such as serial error handling.
For more information on the peripheral detection mechanism, see Section 15.4 on

page 292.

■ Pass-through peripherals

These include peripherals that connect to a handheld or smartphone and have
another connector to allow the peripheral to be connected to a USB HotSync
cable or cradle.

15.2 Pinout of the Multi-connector
The pinout, with or without mounts, is described in the following table. All pin
references that follow in this chapter refer to the device connector pin-numbering
scheme shown in this table.

Pin # on

device/

Multi-

connector

Pin # on

charger/

adapter

connector

Pin# on

data/

cable

connector

Name Direction
with respect
to the device

Default
state with
no
attachment

Function

1 1 VDOCK Power CHRG_IN DC charging
voltage, 5V

2 2 ADAPTER_ID Input VCC, weak
pull-up

Adapter
identification

3 3 VDOCK_RTN Power GND DC charging
return

4 - 1 SHIELD Shield GND Cable shield

5 - 2 VBUS Power VBUS_IN USB charging
voltage, 5V
typical, 500 mA
max

6 - 3 USB_DP Input/output Floating USB Data +

7 - 4 USB_DN Input/output Floating USB Data -

8 - 5 DGND Power GND Digital ground,
and VBUS return

9 - 6 Reserved NA NA Do not connect

Pinout of the Multi-connector

 Palm Developer Guide, Palm OS Platform, Rev. J 285

10 - 7 TXD Input/output VCC, weak
pull-up

Transmit data,
3.3V logic level

11 - 8 RXD Input VCC, weak
pull-up

Receive data,
3.3V logic level

12 - 9 HOTSYNC Input VCC, weak
pull-up

HotSync input,
active low,
pulled up on
device

13 - 10 POWER_OUT Output High
impedance

Power output to
external devices

14 - 11 SPKR_L Analog
output

AC coupled Speaker output
left

15 - 12 SPKR_R Analog
output

AC coupled Speaker output
right

16 - 13 AGND Power GND Analog ground

17 - 14 MIC_IN Analog input DC coupled Microphone
input

18 - 15 SHIELD Shield GND Cable shield

Pin # on

device/

Multi-

connector

Pin # on

charger/

adapter

connector

Pin# on

data/

cable

connector

Name Direction
with respect
to the device

Default
state with
no
attachment

Function

Chapter 15 Multi-connector Specifications

286 Palm Developer Guide, Palm OS Platform, Rev. J

15.2.0.1 Shielding
On all peripheral devices, the shield pins 4 and 18 should be grounded with any
available shielding system ground. For example, on a USB cable these pins should
be connected to the USB cable outer shield, which in turn connects to the shield on
the USB connector at the other end of the cable.

Where no external shielded ground is available peripherals should connect pins
4 and 18 to the peripheral’s system ground.

15.2.1 USB
Pins 5, 6, 7, and 8 constitute the USB VBUS, D+, D-, and GND pins respectively.

The handheld is designed to accept the following parameters on pins 5, 6, 7, and 8:

15.2.2 Serial interface hardware
Pins 10 and 11 provide 3.3V logic-level serial connections with no dedicated hardware
flow control pins. The direction of these pins with respect to the device is as follows:

■ Pin 10 transmits from the handheld

■ Pin 11 receives into the handheld.

The serial port connected to pins 10 and 11 supports the following bit rates and
configuration options:

■ 1,200 baud

■ 2,400 baud

■ 4,800 baud

■ 9,600 baud

■ 14,400 baud

■ 19,200 baud

■ 28,800 baud

■ 38,400 baud

■ 57,600 baud

■ 115,200 baud

■ 7 data bits

Name Description Minimum Average Maximum Units

(V)USB_VBUS_CHG Input charging voltage 4.375 5.0 5.25 V

(V)USB_VBUS_CHG Input serial peripheral
detection voltage

2.97 3.3 3.63 V

(I)USB_VBUS_L Input charging current, no
negotiation, sunk from VBUS

- - 100 mA

(I)IUSB_VBUS_H Input charging current, with
negotiation, sunk from VBUS

- - 500 mA

Pinout of the Multi-connector

 Palm Developer Guide, Palm OS Platform, Rev. J 287

■ 8 data bits

■ No stop bits

■ 1 stop bit

■ Parity bit

■ No parity bit

Both pins 10 and 11 are pulled high within the device by weak pull-ups. For more
information on how these weakly pulled, high input characteristics are used in the
peripheral detection mechanism, see Section 15.4 on page 292.

Pins 10 and 11 operate at 3.3V nominal voltage levels.

Treo 650 smartphones, Tungsten T5 handhelds and E2 handhelds, and LifeDrive
mobile managers are designed to accept the following parameters on pins 10 and 11:

*With respect to digital ground, pin 8

15.2.3 Serial interface software
The Multi-connector serial pins interface with the Palm OS® software as a virtual
serial port.

Name Description Minimum Average Maximum Units

(V)RXTX_INL Input logic low voltage* 0 - 0.594 V

(V)RXTX_INH Input logic high voltage* 2.904 - 3.63 V

(V)TX_OUTL Output logic low voltage* 0 - 0.3 V

(V)TX_OUTH Output logic high voltage* 2.67 - 3.63 V

(V)TX_OC Open circuit TX line voltage* - 3.3 - V

(V)RX_OC Open circuit RX line voltage* - 3.3 - V

Chapter 15 Multi-connector Specifications

288 Palm Developer Guide, Palm OS Platform, Rev. J

15.2.4 HotSync® interrupt hardware
Pin 12 provides a HotSync Interrupt pin. The HotSync interrupt is weakly pulled high
inside the device.

A HotSync interrupt is initiated when pin 12 is pulled to GND.

The HotSync interrupt is not used in the peripheral detection mechanism; it only
initiates a HotSync operation.

The presence of the pullup on the HotSync pin can be used by a peripheral as a
method to detect when a device is attached to the peripheral.

Treo 650 smartphones, Tungsten T5 handhelds and E2 handhelds, and LifeDrive
mobile managers are designed to accept the following parameters on pin 12:

*With respect to digital ground, pin 8

15.2.5 HotSync® interrupt software
The HotSync interrupt is always set as an input. The default interrupt detection occurs
on a falling edge.

15.2.6 Power output
Pin 13 provides a power output to power an external peripheral. This power output
is limited to low-current capability only. The power output is normally driven LOW
or floated as a high impedance signal to minimize the chances of a short to GND
damaging the device.

Treo 650 smartphones, Tungsten T5 handhelds and E2 handhelds, and LifeDrive
mobile managers are designed to accept the following parameters on pin 13:

*With respect to digital ground, pin 8

Name Description Minimum Average Maximum Units

(V)HS_INL Input logic low-voltage*
triggering interrupt

0 - 0.594 V

(V)HS_OC Open circuit line voltage* - 3.3 - V

Name Description Minimum Average Maximum Units

(V)POUT_L Output inactive voltage* 0 - 0.363 V

(V)POUT_H Output active voltage* 2.97 3.3 - V

(I)POUT Output current supplied 30 - - mA

(R)POUT Minimum load series
resistance to GND*

89 - - Ohms

(C)POUT Maximum load capacitance - - 4.7 µF

Pinout of the Multi-connector

 Palm Developer Guide, Palm OS Platform, Rev. J 289

15.2.7 Audio detection
Tungsten T5 handhelds and E2 handhelds, and LifeDrive mobile managers
automatically detect and switch audio if they detect an attached audio peripheral
and the audio peripheral indicates that a headset is inserted into the handheld.

Tungsten T5 handhelds and E2 handhelds, and LifeDrive mobile managers should
not, however, have a headset inserted into the headset jack and be attached to an
audio peripheral at the same time. The audio signal would be shared between the
two, resulting in a loss of volume on the headset and the Multi-connector audio
output channels.

15.2.8 Audio output
Pins 14 and 15 provide headphone-level stereo audio output. This output is intended
to drive an external audio output device (such as a “boom box”), or to interface with
a car kit.

Devices typically connect pins 14 and 15 directly to their headset stereo
output signals.

Chapter 15 Multi-connector Specifications

290 Palm Developer Guide, Palm OS Platform, Rev. J

15.3 Peripheral requirements
For information on the peripheral detection mechanism that drives many of the
requirements listed in this section, see Section 15.4 on page 292.

Peripherals are required to conform to the following specifications to ensure
successful operation with Treo 650 smartphones, Tungsten T5 handhelds and E2
handhelds, and LifeDrive mobile managers:

*Pull-downs required for peripheral detection mechanism. May not be required on either or both of the RX and
TX lines.

Name Description Minimum Average Maximum Units

(C)PHL_LOAD Capacitive load on POWER
OUT pin

- - 4.7 µF

(R)PHL_LOAD Minimum load series
resistance on POWER OUT
pin

121 - - Ohms

(V)PHL_RXTX_INL Serial line input logic low
voltage*

0 - 0.594 V

(V)PHL_RXTX_INH Serial line input logic high
voltage*

2.904 - 3.63 V

(V)PHL_RX_OUTL Serial handheld receive line
output logic low voltage*

0 - 0.3 V

(V)PHL_RX_OUTH Serial handheld receive line
output logic high voltage*

2.67 - 3.63 V

(R)PHL_TX_DOWN Pull-down to GND on TX* 1K - 10K Ohms

(R)PHL_RX_DOWN Pull-down to GND on RX* 1K - 10K Ohms

Peripheral requirements

 Palm Developer Guide, Palm OS Platform, Rev. J 291

15.3.1 Audio peripherals
Audio peripherals should conform to the following requirements:

15.3.2 General serial peripherals
Serial peripherals should conform to the following requirements.

Name Description Minimum Average Maximum Units

(R)PHL_A_DET Maximum series resistance
to ground on TX line for
Audio Peripheral detection

- - 10K Ohms

(R)PHL_A_DET_HS Maximum series resistance
to ground on RX line for
Audio Peripheral Headset
Jack Insertion detection

- - 10K Ohms

(R)PHL_A_DET_NH
S

Minimum series resistance
to ground on RX line for
Audio Peripheral Headset
Jack Insertion Absence
detection

10M - No
maximum

Ohms

(R)AOUT_MIN Minimum series resistance
to ground on pins 14 and 15

8 - - Ohms

Name Description Minimum Average Maximum Units

(T)PHL_SER_DLY

==

(T)DET_RXTX_DLY

Delay from POWER OUT
applied to peripheral driving
into Rx line

450 - - mS

RPHL_SER_DET Series resistance to ground
on TX and RX line before
POWER_OUT applied for
Serial Peripheral detection

6.8K - - Ohms

VPHL_SER_DET Minimum voltage on TX and
RX line after POWER_OUT
applied for Serial Peripheral
detection

2.904 - POWER_OUT V

RPHL_SER_NDET Maximum series resistance
between VBUS and
POWER_OUT for Serial
Peripheral Detachment
detection

- - 10 Ohms

Chapter 15 Multi-connector Specifications

292 Palm Developer Guide, Palm OS Platform, Rev. J

15.4 Peripheral detection
The Multi-connector interface provides class-level peripheral detection. The class-
level detection mechanism is performed using hardware detection with no software
requirements on the peripheral.

Peripheral detection is initiated by triggering either the serial TX or serial RX lines in
their GPIO states as falling edge interrupts. After detection of an interrupt, software
in the device debounces the interrupted line for at least (T)DET_DBC milliseconds. If
the condition causing the interrupt on the TX or RX lines still exists after (T)DET_DBC
milliseconds, class-level detection initiates.

15.4.1 Class-level detection
Class-level detection involves sampling the serial TX and RX lines as GPIO inputs
both before and after the application of POWER_OUT. This provides four bits to define
the attached peripheral, resulting in 12 possible attached configurations. (The
situation in which both RX and TX stay high after attachment of the peripheral is
invalid as no attachment interrupt is detected, thus invalidating four possible
combinations.)

15.4.1.1 Peripheral attachment
Before attachment of any peripheral, the TX and RX lines are configured as GPIO
inputs and have weak pull-ups attached to each line.

When a peripheral is attached, at least one of the TX or RX lines must by definition
be low. After debouncing the signal, the device samples the RX and TX lines and
applies power to the peripheral through the POWER_OUT signal. The device then
waits (T)DET_PWR_DLY milliseconds to allow the peripheral to power up, and then
samples the TX and RX lines again.

If you want a peripheral to identify itself, it must have strong pull-downs on the
appropriate serial communications lines. Some serial peripherals may not require
such strong pull-downs because the impedance to ground of the unpowered serial
input pins may provide small enough resistance to GND to allow detection to operate
effectively. Also, the peripheral must not power the RX line until (T)DET_RXTX_DLY
milliseconds after power is applied.

When a Tungsten T5 or Tungsten E2 handheld or LifeDrive mobile manager detects
that an audio peripheral is attached, the device automatically switches audio from the
internal device speaker to the audio of the peripheral. As noted earlier, Tungsten T5
or Tungsten E2 handhelds and LifeDrive mobile managers should not have a headset
inserted into the headset jack and be attached to an audio cradle at the same time.
The audio signal would be shared between the two, resulting in a loss of volume on
the headset and the Multi-connector audio output channels.

Peripheral detection

 Palm Developer Guide, Palm OS Platform, Rev. J 293

The truth table for class-level detection is as follows:

15.4.1.2 Peripheral removal
For audio class peripherals, detachment is detected by the TX and RX lines going
high. The device detects these changing GPIO signals by detecting the rising edge,
and initiates peripheral removal activities.

For serial class peripherals, detachment is detected by the absence of 3.3V on the
USB VBUS line. The device detects this changing GPIO signal by detecting the falling
edge and initiates peripheral removal activities.

Before

attachment

Peripheral

attached, no

POWER_OUT

Peripheral

attached,

POWER_OUT

applied

Class

TX RX TX RX TX RX

1 1 0 0 0 0 Audio peripheral detected, headset
not inserted

1 1 0 0 0 1 Reserved for future use

1 1 0 0 1 0 Reserved for future use

1 1 0 0 1 1 Serial peripheral detected

1 1 0 1 0 0 Reserved for future use

1 1 0 1 0 1 Audio peripheral detected, headset
inserted

1 1 0 1 1 0 Reserved for future use

1 1 0 1 1 1 Reserved for future use

1 1 1 0 0 0 Reserved for future use

1 1 1 0 0 1 Reserved for future use

1 1 1 0 1 0 Reserved for future use

1 1 1 0 1 1 Reserved for future use

Chapter 15 Multi-connector Specifications

294 Palm Developer Guide, Palm OS Platform, Rev. J

15.4.2 Audio peripheral detection timing diagrams
The following figure shows the timing diagram upon attachment of an audio
peripheral with a headset not inserted.

The following figure shows the timing diagram upon attachment of an audio
peripheral with a headset inserted.

HOTSYNC_INT

RXD

VBUS

POWER_OUT

TDET_DBC

TATTACH

TDET_PWR_DLY

TDET_RXTX_DLY

TSDET_ID_TIMEOUT

TXD

TDET_SAMP1

TDET_SAMP2

TDETACH

HOTSYNC_INT

RXD

VBUS

POWER_OUT

TDET_DBC

TATTACH

TDET_PWR_DLY

TDET_RXTX_DLY

TSDET_ID_TIMEOUT

TXD

TDET_SAMP1

TDET_SAMP2

TDETACH

Peripheral detection

 Palm Developer Guide, Palm OS Platform, Rev. J 295

15.4.3 Serial peripheral detection timing diagram
The following figure shows the timing diagram upon attachment of a serial
peripheral.

15.4.4 Peripheral detection timing specifications
The following are the timing requirements for the peripheral detection mechanism:

HOTSYNC_INT

RXD

VBUS

POWER_OUT

TDET_DBC

TATTACH

TDET_PWR_DLY

TDET_RXTX_DLY

TSDET_ID_TIMEOUT

TXD

TDET_SAMP1

TDET_SAMP2

TDETACH

Name Description Minimum Average Maximum Units

(T)DET_DBC Attachment interrupt
debounce duration

150 - - mS

(T)DET_SAMP1 Time to read the state of the
RX and TX GPIO before
POWER OUT applied

- - 50 mS

(T)DET_PWR_DLY Delay from POWER OUT
applied to reading the state
of the RX and TX GPIO

200 - 200 mS

(T)DET_SAMP2 Window of time from
maximum
(T)DET_PWR_DLY to read
the state of the Rx and Tx
GPIO after POWER OUT
applied

- - 50 mS

Chapter 15 Multi-connector Specifications

296 Palm Developer Guide, Palm OS Platform, Rev. J

15.5 Interfacing with an audio peripheral
The recommended method for interfacing with an audio peripheral is for the
peripheral to be wired as described in the following table:

(T)SDET_ID_TIMEOUT Timeout from
(T)DET_SAMP2 window
finished until determination
that peripheral is Serial
Protocol Level detection
peripheral

200 - 200 mS

(T)DET_RXTX_DLY Delay from POWER OUT
application to peripheral
driving into RX line

450 - - mS

Name Description Minimum Average Maximum Units

Name Pin # Recommended configuration

VDOCK 1 Charging source if charging device; otherwise no
connect.

ADAPTER_ID 2 Connect to pin 3 if charging device with >=1Amp
source; otherwise no connect.

VDOCK_RTN 3 Charging source ground if charging device;
otherwise system ground.

SHIELD 4 Shield ground or system ground.

VBUS 5 No connect.

USB_DP 6 No connect.

USB_DN 7 No connect.

DGND 8 System digital ground.

USB_ID 9 No connect.

TXD 10 10K Ohm pull-down to DGND.

RXD 11 Insertion detection switch on headset jack, if any.
Signal should connect to GND when no headset is
inserted. Signal should be high impedance when
headset is inserted.

HOTSYNC 12 No connect.

POWER_OUT 13 Connect to system power if required by peripheral.

SPKR_L 14 Audio left signal.

Interfacing with an audio peripheral

 Palm Developer Guide, Palm OS Platform, Rev. J 297

Circuit Needed for Proper Coupling and Bias of Microphone Input

SPKR_R 15 Audio right signal.

AGND 16 System audio ground.

MIC_IN 17 Microphone input.

SHIELD 18 Shield ground or system ground.

Name Pin # Recommended configuration

Multi-
connector

Pin 16

Multi-
connector

Pin 17

2K

1uF

Audio
Amplifier

Analog
Ground

Analog
Ground

Microphone
IN

Optional
Push To

Talk

<= 1V
Peak to

Peak

Chapter 15 Multi-connector Specifications

298 Palm Developer Guide, Palm OS Platform, Rev. J

15.6 Interfacing with a serial peripheral
The recommended method for interfacing with a serial peripheral is for the
peripheral to be wired as described in the following table:

Name Pin # Recommended configuration

VDOCK 1 Charging source if charging device; otherwise no connect.

ADAPTER_ID 2 Connect to pin 3 if charging device with >=1Amp source;
otherwise no connect.

VDOCK_RTN 3 Charging source ground if charging device; otherwise
system ground.

SHIELD 4 Shield ground or system ground.

VBUS 5 Connect to POWER_OUT.

USB_DP 6 No connect.

USB_DN 7 No connect.

DGND 8 System digital ground.

USB_ID 9 No connect.

TXD 10 680 Ohm pull-up to POWER_OUT.

6.8K Ohm pull-down to DGND.

RXD 11 680 Ohm pull-up to POWER_OUT.

6.8K Ohm pull-down to DGND.

HOTSYNC 12 The presence of pull-up on this pin can be used by
a peripheral as a method to detect when a device is
attached to the peripheral.

POWER_OUT 13 Connect to system power if required by peripheral.

SPKR_L 14 No connect.

SPKR_R 15 No connect.

AGND 16 No connect.

MIC_IN 17 No connect.

SHIELD 18 Shield ground or system ground.

Interfacing with a serial peripheral

 Palm Developer Guide, Palm OS Platform, Rev. J 299

15.6.1 Electrical diagram of a serial peripheral
A peripheral that conforms to the following electrical diagram will be detected as a
serial peripheral on Multi-connector devices.

To ensure that the peripheral works reliably with Treo 650 smartphones and other
Palm devices, the serial peripheral's 1K resistors were changed to 680 ohm, and the
10K resistors were changed to 6.8K.

If the peripheral uses the POWER_OUT pin to detect that a device detached, it should
include the diode shown in the circuit. This will ensure that there is no loop back from
the Tx line (peripheral side) to the POWER_OUT pin. If a diode is included, then make
sure to adjust for the voltage drop across the diode.

The Tx line of the peripheral always drives high according to the specification, and if
the diode is not present, the POWER_OUT pin will drive high at all times. In this
scenario, even if the device is removed, the POWER_OUT pin will stay high and
prevent the peripheral from using the POWER_OUT pin to reliably detect that the
device is detached.

DGND

RXD

TXD

VBUS

680 680

6.8K 6.8K

POWER_OUT

Diode Diode

100K

4.7 uF

VCC

Enable
Pin

To TXD OUT
of peripheral

To RXD IN
of peripheral

5

4

1

2

3

6

7

8

9

10

11

12

13

14

15

16

17

18

Tri-State
Buffer

Chapter 15 Multi-connector Specifications

300 Palm Developer Guide, Palm OS Platform, Rev. J

15.6.2 Serial peripheral design guidelines
■ (Optional) PWR_OUT tied to VBUS through a user selectable switch.

■ 6.8K pull-down resistors on the TXD and RXD pins to ground.

■ 680 Ohm pull-up resistors from TXD and RXD to PWR_OUT pins.

■ Tie Multi-connector pins 4, 18 to pin 8 (digital ground).

■ If the serial peripheral is going to be connected to a PC, a transceiver is needed to
convert the logic level to RS-232. Make sure all flow control lines are handled at
the DB9 side connected to PC. Connect pin 7 to pin 8 (RTS to CTS) and pin 1 and
6 to pin 4 (DSR to DTR and CD).

■ Transceiver tied to TXD and RXD pins must be high impedance while PWR_OUT
is low, and must remain high impedance 500mS after PWR_OUT goes high. This
could be done with a charge up capacitor on the ENA or PWR pin of the transceiver
or with a PIC microcontroller device. In other words, TXD and RXD must not be
active while the peripheral detection is in progress. There should be no data on
TXD and RXD while the detection is in progress.

■ PWR_OUT will only source 30mA total.

■ Do not drive any pins higher than 3.3V.

■ Do not drive VBUS over 3.3V.

■ HotSync going low is an indication of detachment detection.

Serial Peripheral Usage

 Palm Developer Guide, Palm OS Platform, Rev. J 301

15.7 Serial Peripheral Usage

15.7.1 Serial support on the Multi-connector interface
The Multi-connector interface supports serial connections with no hardware flow
control. It provides 3.3V logic-level serial connections. It DOES NOT support RS-232
level serial connections.

The Multi-connector's Rx, Tx, and Gnd pins cannot be connected directly to a PC's Tx,
Rx, and Gnd pins, respectively. To connect the Multi-connector to a PC, you will need
a transceiver to convert the logic level to RS-232.

15.7.2 How to use the serial port
For devices that have the Multi-connector, applications must use the Serial Manager
to control the serial port. To control the serial port, use the following functions:

■ To open the serial port use the SrmOpen function.

■ To close the serial port use the SrmClose function.

■ Use the serPortCradleRS232Port function to define the port.

The following example shows how to open and close the serial port
programmatically:

// To Open the Serial Port
err = SrmOpen(serPortCradleRS232Port, baudRate, &portId);

// To Close the Serial Port
err = SrmClose(portId);

Devices that use the Multi-connector DO NOT support port auto-detection. Also, the
serPortCradlePort function DOES NOT work for serial connection.

15.7.3 Multi-connector peripheral attach and detach notifications
■ sysExternalConnectorAttachEvent is sent when a peripheral is attached

■ sysExternalConnectorDetachEvent is sent when a peripheral is removed

■ notifyDetailsP determines the type of the peripheral

– DockStatusAttached is sent when some type of peripheral is attached. The
value is 0x0002.

– DockStatusExternalPower is sent when a peripheral is attached and using
some type of external power source. The value is 0x0004.

– DockStatusCharging is sent when the internal power cells are recharging. The
value is 0x0008.

– DockStatusUSBCradle is sent when a USB cable or cradle that is plugged into
a PC (VBUS is present) is attached. The value is 0x0010.

NOTE: This bit is not set for Treo 650 smartphones.
– DockStatusSerialPeripheral is sent when a Multi-connector serial peripheral

is attached. The value is 0x0040.
NOTE: This bit is not set for Treo 650 smartphones.

Chapter 15 Multi-connector Specifications

302 Palm Developer Guide, Palm OS Platform, Rev. J

15.7.3.1 Multi-connector serial peripheral notification
The Multi-connector uses the following serial peripheral notifications:

■ sysExternalConnectorAttachEvent is sent when a serial peripheral is attached
with notifyDetailsP equal to 0x0040 (DockStatusSerialPeripheral).

■ sysExternalConnectorDetachEvent is sent when a serial peripheral is removed
with notifyDetailsP equal to 0x0040 (DockStatusSerialPeripheral).

15.7.3.2 Notification support on Treo™650
Previously, a bug prevented notifications from being sent on Treo 650 smartphones.

Currently, this bug is fixed in all maintenance releases for Treo 650 smartphones, and
notifications are now properly sent to applications.

NOTE: On Treo 650 smartphones, DockStatusUSBCradle and
DockStatusSerialPeripheral bits are never set. Perform class detection using the
PmConnectorLib library.

15.7.3.3 Notification support on Tungsten™T5
Definitions for notifications sent on Tungsten T5 devices include:

■ DockStatusCharging is sent when the Power Adapter is attached.

■ DockStatusUSBCradle is sent when the USB cable or cradle is attached.

NOTE: A bug in Tungsten T5 also causes the DockStatusUSBCradle notification to be
sent when a serial peripheral is attached.

15.7.4 Known Issues
A bug in Tungsten T5 causes the DockStatusSerialPheripheral notification to be
sent when an audio peripheral is attached.

The same bug causes the DockStatusUSBCradle notification to be sent when a serial
peripheral is attached.

Serial Peripheral Usage

 Palm Developer Guide, Palm OS Platform, Rev. J 303

15.7.5 Coding example
The following example illustrates how to use peripheral attachment and detachment
notifications:

UInt32 PilotMain(const UInt16 cmd,
 const MemPtr cmdPBP,
 const UInt16 launchFlags)
{
 Err error = errNone;
 UInt16 cardNo = 0;
 LocalID dbId = 0;
 SysNotifyParamType *notifyP = (SysNotifyParamType *)NULL;
 UInt16 connectorType = 0;

 switch (cmd)
 {

 case sysAppLaunchCmdNormalLaunch:
 error = SysCurAppDatabase(&cardNo, &dbId);

 SysNotifyRegister(cardNo,
 dbId,
 sysExternalConnectorAttachEvent,
 0,
 sysNotifyNormalPriority,
 0);

 SysNotifyRegister(cardNo,
 dbId,
 sysExternalConnectorDetachEvent,
 0,
 sysNotifyNormalPriority,
 0);

 ...
 break;

 case sysAppLaunchCmdNotify:
 notifyP = (SysNotifyParamType *)(cmdPBP);
 switch (notifyP->notifyType)
 {
 case sysExternalConnectorDetachEvent:
 connectorType = ((UInt16)(notifyP->notifyDetailsP));
 // Connector Type is 0x0040 for the serial peripheral.
 break;

 case sysExternalConnectorAttachEvent:
 connectorType = ((UInt16)(notifyP->notifyDetailsP));

 // Connector Type is 0x0040 for the serial peripheral.
 break;
 }
 break;

 default:
 break;
 }
}

Chapter 15 Multi-connector Specifications

304 Palm Developer Guide, Palm OS Platform, Rev. J

15.7.6 Serial peripheral detection
To enable detection of a peripheral as a serial peripheral on a Multi-connector device,
make sure that serial peripheral attachments and detachments are detected, and that
appropriate notifications are sent, use the following steps:

1. Connect the 6.8K pull-downs on both Tx and Rx pins to the GND pin.

2. Connect the 680 ohm pull-ups on both Tx and Rx pins to the POWER_OUT pin.

3. Connect the VBUS signal to the POWER_OUT signal.

Once the serial peripheral is detected, the POWER_OUT pin will stay up as long as the
peripheral is attached.

You may hear a beep when attaching or detaching the serial peripheral. This sound
is related to detecting a serial peripheral attachment or detachment. But there is no
guarantee that the beep will sound.

15.7.6.1 Serial peripheral detection on Treo™650
Previously, a bug prevented serial peripheral detection notifications from being sent
on Treo 650 smartphones.

Currently, this bug is fixed in all maintenance releases for Treo 650 smartphones, and
serial detection notifications are now sent properly to applications.

NOTE: Because the details bit from the notification is not set on Treo 650 devices,
you may use the PmConnectorLib API to determine whether the peripheral uses a
USB or serial connection.

15.7.6.2 Serial peripheral detection on Tungsten™ T5
A bug in the serial peripheral detection on Tungsten T5 devices causes the peripheral
with the configuration detailed in Section 5 to be detected as a USB.

To detect a serial peripheral on Tungsten T5 correctly, use the following steps:

1. Attach the serial peripheral. A sysExternalConnectorAttachEvent notification
with notifyDetailsP equal to DockStatusUSBCradle will be sent.

2. When the sysExternalConnectorAttachEvent (DockStatusUSBCradle) notification
is received, turn off the Power_Out pin using the APIs provided in Section 15.7.7.3
on page 306.

3. The device will send a sysExternalConnectorDetachEvent notification with
notifyDetailsP equal to DockStatusUSBCradle.

4. Next, the device will send a sysExternalConnectorAttachEvent notification with
notifyDetailsP equal to DockStatusSerialPeripheral. This tells you that a serial
peripheral is attached to the Tungsten T5.

5. Next, the device will send a sysExternalConnectorDetachEvent notification with
notifyDetailsP equal to DockStatusSerialPeripheral.

6. Next, the device will send a sysExternalConnectorAttachEvent notification with
notifyDetailsP equal to DockStatusUSBCradle. This tells you that attachment
detection is complete.

7. When you remove the serial peripheral, the device will send a
sysExternalConnectorDetachEvent notification with notifyDetailsP equal to
DockStatusUSBCradle.

Serial Peripheral Usage

 Palm Developer Guide, Palm OS Platform, Rev. J 305

15.7.7 Connector library (PmConnectorLib)
Use the PmConnectorLib library to turn on and off the Power_Out pin
programmatically.

15.7.7.1 PmConnectorLib on Treo™650
Previously, the PmConnectorLib library was not available on Treo 650 smartphones.

Currently, all recent maintenance releases of the Treo 650 smartphone and later
include this library, and applications can utilize the APIs provided by the library.

15.7.7.2 PmConnectorLib on Tungsten™ T5
On Tungsten T5 devices, the PmConnectorLib library must use slightly different
definitions than those available as part of the Palm OS SDK. Use the following
definitions when using the PmConnectorLib on Tungsten T5:

#if (CPU_TYPE != CPU_68K) || (defined BUILDING_PMCONNECTOR_LIB)
#define PMCONNECTOR_LIB_TRAP(trapNum)

#else
#include <LibTraps.h>
#define PMCONNECTOR_LIB_TRAP(trapNum) SYS_TRAP(trapNum)

#endif

#define kPmConnectorLibType sysFileTLibrary
#define kPmConnectorLibCreator 'PmAt'
#define kPmConnectorLibName "PmConnector"

#define kPmConnectorLibTrapOpensysLibTrapOpen
#define kPmConnectorLibTrapClosesysLibTrapClose

#define kPmConnectorLibCtrlPowerOn0x01
#define kPmConnectorLibCtrlPowerOff0x02

Err
PmConnectorLibOpen (UInt16 refNum)
 PMCONNECTOR_LIB_TRAP (kPmConnectorLibTrapOpen);

Err
PmConnectorLibClose (UInt16 refNum)
 PMCONNECTOR_LIB_TRAP (kPmConnectorLibTrapClose);

Err
PmConnectorLibControl (UInt16 refNum, UInt16 cmdId, void *parmP)
 PMCONNECTOR_LIB_TRAP (sysLibTrapCustom + 1);

Chapter 15 Multi-connector Specifications

306 Palm Developer Guide, Palm OS Platform, Rev. J

15.7.7.3 Power_Out API
Once the serial peripheral is detected, the POWER_OUT pin will stay up as long as the
peripheral is attached. However, if you would like to programmatically turn on or off
the POWER_OUT pin, use the APIs in the following examples, which are available as
part of PmConnectorLib:

NOTE: This API should be used only with PmConnectorLib version 1.3 and later.

To turn on the Power_Out pin:

// Send Power to the Power_out pin
{

// Try to find the library
err = SysLibFind(kPmConnectorLibName, &refNum);
if (err != errNone)

 err = SysLibLoad(kPmConnectorLibType,
 kPmConnectorLibCreator, &refNum);

if(err) {
FrmCustomAlert(InformationAlert,

 "Unable to load connector library", NULL,
 NULL);

}
else
{

PmConnectorLibOpen(refNum);
PmConnectorLibControl(refNum,

kPmConnectorLibCtrlPowerOn, (void *)NULL);
PmConnectorLibClose(refNum);

}
}

To turn off the Power_Out pin:

// Remove Power from the Power_out pin
{

// Try to find the library
err = SysLibFind(kPmConnectorLibName, &refNum);
if (err != errNone)

 err = SysLibLoad(kPmConnectorLibType,
 kPmConnectorLibCreator, &refNum);

if(err) {
FrmCustomAlert(InformationAlert,

 "Unable to load connector library", NULL,
 NULL);

}
else
{

PmConnectorLibOpen(refNum);
PmConnectorLibControl(refNum,

 kPmConnectorLibCtrlPowerOff,
 (void *)NULL);

PmConnectorLibClose(refNum);
}

}

Serial Peripheral Usage

 Palm Developer Guide, Palm OS Platform, Rev. J 307

15.7.8 Serial HotSync
Palm, Inc. does not officially support Serial HotSync on devices with the Multi-
connector.

15.7.8.1 On Treo™650
Previously, Serial HotSync worked on Treo 650 by disconnecting VBUS from the
POWER_OUT pin.

Currently, because the class detection mechanism was implemented in maintenance
releases for Treo 650 ROMs, you should no longer disconnect VBUS from
POWER_OUT to force serial detection. To ensure proper detection, connect VBUS to
POWER_OUT.

15.7.8.2 On Tungsten™T5
Serial HotSync works on Tungsten T5. To use Serial HotSync, make sure that the
VBUS is not connected to the POWER_OUT pin. Also, be aware that Serial HotSync
only works at lower baud rates on Tungsten T5 devices.

15.7.9 Known Issues

15.7.9.1 Data transfer via the Network Preferences Panel
Using the cradle or cable in Network Preferences to connect to the network over the
serial connection may not work on Tungsten devices. There are two reasons for this
problem:

1. The serial peripheral as described in this guide (with pull up resistors connecting
POWER_OUT to Rx and Tx, pull down resistors connecting Ground to Rx and Tx,
and the POWER_OUT pin connected to VBUS) is detected by the device as a USB.

Network Preferences uses this detection to determine which port, Serial or USB,
to open for the network connection.

To work around this issue, make sure VBUS is NOT connected to the POWER_OUT
pin. This will ensure that the serial port is open for the network connection.
(Tungsten T5 only.)

2. Network Preferences enables flow control.

The serial driver on Tungsten devices, which do not have serial flow control pins,
does not handle disable flow control. The serial driver enables flow control and
waits for the CTS to go high before transmitting data. With flow control enabled,
the CTS will never go high. Therefore, Network Preferences cannot transmit data
over the serial.

To work around this issue, disable flow control on the serial port. For instructions,
see the Tungsten T5 Flow Control Sample Code included in the Palm OS SDK.

Chapter 15 Multi-connector Specifications

308 Palm Developer Guide, Palm OS Platform, Rev. J

15.7.9.2 Wake/Sleep loop on Palm® T|X
When a Palm T|X handheld is attached to a serial peripheral and goes to sleep, the
device will automatically wake back up. If the device is set to auto-off, this bug will
cause a wake/sleep loop.

By default, the device turns the POWER_OUT pin low when it goes to sleep. This
causes the VBUS pin to go low. This change of state triggers an interrupt that wakes
up the device.

15.8 Interfacing with Smart serial peripherals
Smart serial peripheral detection is a detection scheme available only on Palm T|X
handhelds and Treo 700p, Treo 755p, and Centro smartphones.

A smart serial peripheral is detected in two steps:

1. Smart serials use the class 110111. Do not allow smart serial peripheral detection
to interfere with the class detection. In other words, smart serial peripheral
detection MUST NOT drive the Tx or Rx pins during the class detection cycle. To
prevent driving the Tx or Rx pins at this time, use tri-state buffers or set the GPIO
pins on the Smart serial accessory to an “Input” state during class detection.

The class detection cycle that detects a smart serial accessory is defined as the
period when the POWER_OUT pin is low, then transitions to high. The period ends
when the device begins to broadcast '#''NAK' (0x23, 0x15). (See Step 2 for
details.)

For details on the state of pins before and after the POWER_OUT cycle, refer to the
Smart serial timing diagram that follows.

2. After class detection is completed, the Palm device will attempt handshakes with
the Smart Serial accessory to identify the ID of the Smart Serial peripheral
attached.

15.8.1 Smart serial peripheral handshaking process
The Smart serial peripheral interface uses the following handshaking procedure to
communicate to the Palm device. Currently, only the Palm T|X and Treo 700p and Treo
755p smartphones uses the Smart serial peripheral interface.

15.8.1.1 Initialization
1. The device detects that a Smart Serial accessory is attached (Class code 0x07).

2. The device configures its Tx pin as Serial Output and Rx pin as Serial Input.

3. The device opens the serial port at 9600 Baud (8, N, 1).

Interfacing with Smart serial peripherals

 Palm Developer Guide, Palm OS Platform, Rev. J 309

15.8.1.2 First Handshake
1. The device sends a '#''NAK' (0x23, 0x15) to the Smart Serial accessory.

2. The device waits to receive the Peripheral ID packet (8 bytes of data) from the
Smart serial accessory:

– If a Peripheral ID packet (8 bytes of data) is not received in 500mS, then the
process enters the SECOND_HANDSHAKE.

– If a Peripheral ID packet (8 bytes of data) is received within 500mS, then the
packet is checked for validity:

● The device checks that the first byte of data is 'P' (0x50) and the second byte
of data is '1' (0x31).

● The device calculates the checksum by adding the first 7 bytes of data, and
keeps the least significant byte of that data.

● The device compares the calculated checksum with the last byte of data.

● If the checksum does not match the last byte of data, then the process enters
the SECOND_HANDSHAKE.

3. The device sends a '#''ACK' (0x23, 0x06) to the Smart serial accessory.

4. The device waits to receive '#''ACK''O''K' (0x23, 0x06, 0x4F, 0x4B).

– If a '#''ACK''O''K' (0x23, 0x06, 0x4F, 0x4B) is not received in 500mS, then
the process enters the SECOND_HANDSHAKE.

– If a '#''ACK''O''K' (0x23, 0x06, 0x4F, 0x4B) is received in 500mS, then the
process enters FINALIZATION.

15.8.1.3 Second Handshake
1. The device sends a '#''NAK' (0x23, 0x15) to the Smart serial accessory.

2. The device waits to receive the Peripheral ID packet (8 bytes of data) from the
Smart serial accessory.

– If a Peripheral ID packet (8 bytes of data) is not received in 500mS, then the
process enters the THIRD_HANDSHAKE.

– If a Peripheral ID packet (8 bytes of data) is received within 500mS, then the
packet is checked for validity:

● The device checks that the first byte of data is 'P' (0x50) and the second
byte of data is '1' (0x31)

● The device calculates the checksum by adding the first 7 bytes of data, and
keeps the least significant byte of that data.

● The device compares the calculated checksum with the last byte of data.

● If the checksum does not match the last byte of data, then the process enters
the THIRD_HANDSHAKE.

3. The device sends a '#''ACK' (0x23, 0x06) to the Smart serial accessory.

4. The device waits to receive '#''ACK''O''K' (0x23, 0x06, 0x4F, 0x4B).

– If a '#''ACK''O''K' (0x23, 0x06, 0x4F, 0x4B) is not received in 500mS, then
the process enters the THIRD_HANDSHAKE.

– If a '#''ACK''O''K' (0x23, 0x06, 0x4F, 0x4B) is received in 500mS, then the
process enters FINALIZATION.

Chapter 15 Multi-connector Specifications

310 Palm Developer Guide, Palm OS Platform, Rev. J

15.8.1.4 Third Handshake
1. The device sends a '#''NAK' (0x23, 0x15) to the Smart serial accessory.

2. The device waits to receive the Peripheral ID packet (8 bytes of data) from the
Smart Serial accessory.

– If a Peripheral ID packet (8 bytes of data) is not received in 500mS, then the
process enters FINALIZATION.

– If a Peripheral ID packet (8 bytes of data) is received within 500mS, then the
packet is checked for validity.

● The device checks that the first byte of data is 'P' (0x50) and the second byte
of data is '1' (0x31).

● The device calculates the checksum by adding the first 7 bytes of data, and
keeps the least significant byte of that data.

● The device compares the calculated checksum with the last byte of data.

● If the checksum does not match the last byte of data, then the process enters
FINALIZATION.

3. The device sends a '#''ACK' (0x23, 0x06) to the Smart serial accessory.

4. The device waits to receive '#''ACK''O''K' (0x23, 0x06, 0x4F, 0x4B).

– If a '#''ACK''O''K' (0x23, 0x06, 0x4F, 0x4B) is not received in 500mS, then
the process enters FINALIZATION.

– If a '#''ACK''O''K' (0x23, 0x06, 0x4F, 0x4B) is received in 500mS, then the
process enters FINALIZATION.

15.8.1.5 Finalization
1. If a '#''ACK''O'"K' (0x23, 0x06, 0x4F, 0x4B) is received, then the Class Code

and Peripheral ID received in the Peripheral ID packet is broadcast.

2. If a '#''ACK''O'"K' (0x23, 0x06, 0x4F, 0x4B) is not received, then the device will
“soft” detach and re-attempt to detect the class type. (POWER_OUT goes low
without mechanical detachment, then high after a time period).

Interfacing with Smart serial peripherals

 Palm Developer Guide, Palm OS Platform, Rev. J 311

See the following table for an example of the correct handshake sequence:

15.8.1.6 Handshake rule exception
If the Smart Serial accessory does not receive '#''NAK' from the device for 0.6
seconds, it will broadcast the Peripheral ID code unconditionally, and wait for
'#''ACK' or '#''NAK' from the device for a maximum of 1.5 seconds. If the device
and Smart serial accessory do not achieve a complete handshake sequence, then
both will reset to an undocked condition and go through the process again.

15.8.1.7 Sample use case
When a valid class detection is complete, Treo 650 will begin to broadcast "#''NAK'
(hex23, hex 15) repeatedly until either the peripheral returns a valid response, or the
Treo 650 device times out (after 1 second without a valid reply from the peripheral).

If the peripheral broadcasts the correct Creator ID code, then the device will
broadcast '#''ACK' (hex 23, hex 6). The device will continue to broadcast '#''ACK'
until the peripheral returns a valid reply.

Upon seeing the valid '#''ACK' from the device, the peripheral will reply
'#''ACK''O''K' (Hex 23, Hex 6, Hex 4F, Hex4B).

If the peripheral never sees a '#''NAK' from the device after .5 seconds, it will
broadcast the creator ID code unconditionally, then wait for '#''ACK' from Treo 650
for up to 1 second.

If neither the device nor the peripheral manages to synchronize after 2 seconds, both
will reset to an undocked condition and go through the process again.

The tables on the following pages are examples of the correct handshake sequence.

Step Palm device Smart Serial accessory

1 Class Detection NO ACTION

2 '#''NAK'
(hex 23, hex15)

Send Peripheral ID CODE

3 Validate Peripheral
ID code, Checksum

NO ACTION

4 '#''ACK'
(hex 23, hex 06)

 '#''ACK'O''K' (hex 23,
hex 6, hex 4F, hex 4B)

Chapter 15 Multi-connector Specifications

312 Palm Developer Guide, Palm OS Platform, Rev. J

INITIALIZATION

Smart serial
peripheral attached
Class code: 0x07

Palm device
configures TX and

RX pin

Palm device opens
serial port at 9600

baud (8,N,1)
stage = 1

Palm device sends
'#' 'NAK'

Palm device waits
for peripheral ID (8

bytes)

Peripheral ID
received within

500 ms?

Check packet
validity

Are 1st and
2nd bytes 'P1'?

Is checksum
correct?

Palm device sends
'#' 'ACK'

Palm device wait
for '#' 'ACK' 'O' 'K'

Response
received within

500 ms?

Turn
POWER_OUT low
to 'soft detach' and

back high after
time period

Handshaking
stage = stage + 1 stage >3?

Palm device
broadcast class

code and
peripheral ID

HANDSHAKING
1, 2, 3

FINALIZATION

Interfacing with Smart serial peripherals

 Palm Developer Guide, Palm OS Platform, Rev. J 313

Byte

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Palm Device

NA
K

NA
K

ACK

Data 0x2
3

0x1
5

0x2
3

0x1
5

0x2
3

0x0
6

Smart Serial

Accessory

P 1 0 P A I m CK
SUM

ACK O K

Data 0x5
0

0x3
1

0x0
0

0x5
0

0x6
1

0x
6C

0x
6D

0x0B 0x2
3

0x0
6

0x4
F

0x
4B

Chapter 15 Multi-connector Specifications

314 Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

 Palm Developer Guide, Palm OS Platform, Rev. J 315

CHAPTER 16

16. Headset Jack Specifications

This chapter defines the interface and interactions of the headset jack and its
surrounding circuits and controlling software.

16.1 Overview
Available on:
■ Centro™ and Treo™ smartphones

Audio accessories are used for the following general categories of functions:

■ Cell phone audio—Mono-aural sound and mic input

■ Stereo audio—MP3 playback, game, multimedia content

■ Voice input—Voice dialing, voice recording

Typically, mono-aural sound accessories for cell phones have 2.5mm plugs with
three or four contacts, while audio accessories that provide stereo audio (music)
often have 3.5mm plugs.

Palm smartphones use a 2.5mm plug. A 3.5mm headphone accessory may be used
in a 2.5mm headset jack through a 3.5mm-to-2.5mm adapter/converter (available at
most electronics retailers). This converter adapts the physical connector size while
retaining the electrical signal connectivity. This chapter assumes that the 3.5mm
accessories use a 3.5mm-to-2.5mm adapter in order to work with Palm smartphones.

Most stereo accessories (3.5mm with adapter) have three contacts on the plug.
2.5mm cell phone headsets may have three or four contacts on the plug (three-pole
or four-pole plugs). The functional description of this headset jack is illustrated in the
following diagram:

A mechanical detect switch is used to detect the presence of an external accessory.
Electrically, SIGNAL1, SIGNAL2, and SIGNAL3 can each be biased separately on the
motherboard to detect the impedance of the inserted audio accessory. These signals
are measured by the applications processor to distinguish among possible
accessories. The possible connection configurations are shown in the following
figures.

Pin 4 = Ground

Pin 3 = SIGNAL3

Pin 2 = SIGNAL2

Pin 1 = SIGNAL1

Mechanical detect switch

Chapter 16 Headset Jack Specifications

316 Palm Developer Guide, Palm OS Platform, Rev. J

16.1.1 Standard 2.5mm cell phone headset (3-pin)

16.1.2 Stereo headphones (3-pin, 2.5mm or 3.5mm via adapter)

16.1.3 (Custom) Combination headphone/headset (4-pin, 2.5mm)

Each accessory is distinguished by the amount of impedance (electrical resistance)
it presents to each signal pin (SIGNAL1, SIGNAL2, and SIGNAL3). Each signal may
be biased via a resistor network. When the accessory is plugged into the jack, the
voltage present at each pin is measured by the application processor and a decision
algorithm is followed.

Pin 4 = Ground

Pin 3 = SIGNAL3 = unused

Pin 2 = audio out (earpiece)

Pin 1 = mic audio in

Mechanical detect switchPin 1: mic

Pin 2: earbud

Pin 3: ground

2.5 mm

Pin 4 = Ground

Pin 3 = SIGNAL3 = unused

Pin 2 = right channel

Pin 1 = left channel

Mechanical detect switch

left chan

right chan

ground

2.5 mm3.5 mm

Adapter

Pin 4 = Ground

Pin 3 = mic

Pin 2 = right channel

Pin 1 = left channel

Mechanical detect switch

left chan

right chan

ground

2.5 mm

mic

Stereo audio accessories

 Palm Developer Guide, Palm OS Platform, Rev. J 317

16.2 Stereo audio accessories
Stereo accessories that use passive speakers may have impedances of 8Ω, 16Ω, 32Ω,
or 150Ω. Powered or amplified speakers may have similar low impedance, or they
may have 2kΩ, 10kΩ, or higher impedances.

Stereo audio accessories are identified by the relative impedance of the left and right
channels. The distinguishing characteristic of stereo accessories is that the right and
left channels present the same level of impedance to the audio circuitry.
Consequently, the application processor needs to measure the impedance on
SIGNAL1 and SIGNAL2.

■ If SIGNAL1 and SIGNAL2 are both high impedance, the software assumes that an
active stereo circuit accessory has been inserted, and it routes the right and left
audio channels appropriately.

■ If SIGNAL1 is high impedance and SIGNAL2 is low impedance, the software
assumes that a mono-aural cell phone headset has been inserted, and it routes the
mic signal to SIGNAL1.

■ If SIGNAL1 and SIGNAL2 are both low impedance, the software assumes that an
active stereo circuit accessory has been inserted, and it routes the right and left
audio channels appropriately.

The following table illustrates the results:

Processor measures
SIGNAL1 and SIGNAL2

Processor routes audio signals Result

SIGNAL1 = high impedance

SIGNAL2 = high impedance

SIGNAL1 = left channel
SIGNAL2 = right channel

Stereo

SIGNAL1 = high impedance

SIGNAL2 = low impedance

SIGNAL1 = microphone
SIGNAL2 = passive speaker

Mono

SIGNAL1 = low impedance

SIGNAL2 = low impedance

SIGNAL1 = left channel
SIGNAL2 = right channel

Stereo

Chapter 16 Headset Jack Specifications

318 Palm Developer Guide, Palm OS Platform, Rev. J

16.3 Microphones
There are three different microphone sources available in Treo 650 smartphones and
later: the built-in internal mic, the custom combination headphone/headset
accessory, and the standard cell phone headset accessory.

The three potential microphone sources can be detected sequentially in the
following priority:

1. Measure SIGNAL3. If SIGNAL3 is high impedance (not equal to GROUND), then
the software assumes that a combination (hybrid) stereo headset/headphone has
been detected. The mic path is routed to SIGNAL3.

2. Measure SIGNAL1 and SIGNAL2. If SIGNAL1 is high impedance and SIGNAL2 is
low impedance, then a mic has been detected on SIGNAL1 (mono headset
accessory). The mic path is routed to SIGNAL1.

3. If no accessory is inserted, then the software routes the signal to the built-in mic.

SIGNAL3 ≠ GROUND
(combo headphone/headset)

Mic SIGNAL3

Pin 1: left channel
Pin 2: right channel
Pin 3: mic

Pin 4: ground

Pin 1: left channel
Pin 2: right channel
Pin 3: mic

Pin 4: ground

SIGNAL1≠ SIGNAL2
(cellphone headset)

Mic SIGNAL1

Pin 1: mic
Pin 2: speaker
Pin 3: unused

Pin 4: ground

No accessory or
Stereo audio accessory

Mic built-in mic

Pin 1: left channel
Pin 2: right channel
Pin 3: unused

Pin 4: ground

1 2 3

Speaker Architecture

 Palm Developer Guide, Palm OS Platform, Rev. J 319

16.4 Speaker Architecture
Treo 650 smartphones and later have a two-speaker audio architecture. One speaker,
called the receiver, is mostly dedicated to telephony sound and is tuned to voice
frequency. The other, the external speaker, is mostly dedicated to system sounds and
is tuned to polyphonic sounds. It is also used for the speakerphone mode. Palm
smartphones also enable the user to play stereo sound through the headset jack.

Palm smartphones have improved sound support, and their audio subsystem
consists of three major categories:

1. Radio audio control - Enables audio for the cellular radio, playback for received
streams, and encoding and sending for recorded voice.

2. System audio control - Controls the speaker output for polyphonic sound
playback and the microphone input for voice recording.

NOTE: The Treo 600 smartphone does not capture the microphone input
through an A/D converter.

3. Ring Tone Manager - Controls ring tone playback when a call is received.

It’s also possible to redirect the radio module audio output to the SDIO connector so
that an external card could make use of it. For example, the audio output could be
sent to a headset using Bluetooth® wireless technology.

The following figure shows the Treo smartphone audio subsystem hardware.

Chapter 16 Headset Jack Specifications

320 Palm Developer Guide, Palm OS Platform, Rev. J

The following figure shows the Treo smartphone audio subsystem software.

The usual software interface for playing sound is the standard Palm OS Sound
Manager. Palm has added special controls that automatically direct the sound
playback to the right output, as described in the following tables.

The only other APIs you need are found in the API Guide. These enable control of
the audio stream when it is needed. As mentioned earlier, Palm® extension to the
Palm OS should automatically take care of switching the right input/output,
depending on usage.

Software Block Diagram

Hardware Support
Audio Codec, Radio I/O Control, Headset Detection...

AMR Codec
(N/A on CDMA)

Midi Synthesizer

Palm OS Sound
Manager

Handspring Sound
Extension

Application

Handspring Audio Driver

Wave
Codec

Asynchronous
Playback

Anything in this color is
something new or modified by
Handspring Sound Extension

Synchronous
Playback only

Usage scenarios

 Palm Developer Guide, Palm OS Platform, Rev. J 321

16.5 Usage scenarios

16.5.1 Treo™ 600 smartphones
The usage scenarios in the following tables show how the Treo 600 smartphone
system interacts with the audio subsystem when playing or recording audio
stream(s) (that is, what types of sounds are routed to which inputs and outputs).
Some of the supported scenarios are not currently used by Palm, but could be created
by a third party (6, 7, 10–24).

Usage scenario Voice
sound in

Voice
sound out

If phone sounds* If system
sounds**

1 Voice call using
smartphone only

Built-in mic Built-in
receiver

Mixed-in, built-in
speaker

Built-in speaker

2 Voice call using headset Headset
mic

Headset
speaker

Headset speaker Built-in speaker

3 Headset plugged in,
not on a call

N/A N/A Headset speaker
and built-in
speaker

Built-in speaker

4 Stereo headphone
plugged in, not on a call

N/A N/A Headset speaker
and built-in
speaker

Built-in speaker

5 Voice call using
speakerphone

Built-in mic Built-in
speaker

Mixed-in, built-in
speaker

Mixed-in, built-in
speaker

6 Voice call using other
type of headset

OT headset
mic

OT headset
speaker

OT headset
speaker

Mixed in OT
headset speaker

7 Other type of headset
in use, not on a call

N/A N/A OT headset
speaker & built-in
speaker

Built-in speaker

8 Car kit on a call Car kit mic Car kit
speaker

Mixed-in car kit
speaker

Built-in speaker

9 Car kit off a call N/A N/A Car kit speaker Built-in speaker

10 PTT voice call using
headset

Headset
mic

Headset
speaker

Headset speaker
and built-in
speaker

Built-in speaker

11 PTT voice call using
speakerphone

Built-in mic Built-in
speaker

Mixed-in, built-in
speaker

Mixed-in, built-in
speaker

12 Voice record memo Built-in mic N/A Built-in speaker—
priority

Built-in speaker

13 Voice command using
smartphone only

Built-in mic N/A Built-in speaker Built-in speaker

14 Voice command
using headset

Headset
mic

N/A Headset speaker
and built-in
speaker

Built-in speaker

15 Voice command
using car kit

Car kit mic N/A OT headset
speaker

Built-in speaker

Chapter 16 Headset Jack Specifications

322 Palm Developer Guide, Palm OS Platform, Rev. J

Notes for these usage scenarios include:

■ Input

– Built-in mic - The microphone contained in the handset for use when the
headset is held to one’s ear.

– Headset mic - The microphone contained in the headset.

– Other headset or car kit mic - The microphone contained in the appropriate
peripheral kit.

■ Output

– Built-in receiver - The speaker on the front of the handset that is used when the
handset is held next to the ear. Generally used for listening to voice calls.

– Built-in speaker - The louder speaker located on the back of the handset.
Generally used for system sounds and speakerphone mode.

– Headset, OT, or car kit speaker - The speaker built in to the appropriate
peripheral.

■ *“If phone sounds”: This refers to how the audio is routed if the audio from a class
of sounds dedicated to phone usage interrupts the current usage scenario. This
includes the following types of sounds:

– Ring tones.

– Call progress tones.

16 MP3 music playback—
smartphone only

N/A N/A Mixed-in, built-in
speaker

Mixed-in, built-in
speaker

17 MP3 music playback—
headset

N/A N/A Mixed-in headset
and built-in
speaker

Mixed-in headset
and built-in
speaker

18 MP3 music playback—
stereo headphone

N/A N/A Mixed-in
headphone and
built-in speaker

Mixed-in
headphone and
built-in speaker

19 Playing games—
smartphone only

N/A N/A Mixed-in, built-in
speaker

Mixed-in, built-in
speaker

20 Playing games—
headset

N/A N/A Mixed-in headset
and built-in
speaker

Mixed-in headset
and built-in
speaker

21 Playing games—
stereo headphones

N/A N/A Mixed-in
headphone and
built-in speaker

Mixed-in
headphone and
built-in speaker

22 Voice memo playback—
smartphone only

N/A N/A Mixed-in, built-in
speaker

Mixed-in, built-in
speaker

23 Voice memo playback—
headset

N/A N/A Mixed-in headset
and built-in
speaker

Mixed-in headset
and built-in
speaker

24 Voice memo playback—
stereo headphones

N/A N/A Mixed-in
headphone and
built-in speaker

Mixed-in
headphone and
built-in speaker

Usage scenario Voice
sound in

Voice
sound out

If phone sounds* If system
sounds**

Usage scenarios

 Palm Developer Guide, Palm OS Platform, Rev. J 323

– DTMF (dual tone multi-frequency).

– Low battery. This is technically a system sound, because it is generated by the
PDA. It is treated as an exception because a low battery warning is critical
phone-related information that must be heard when on an active call,
regardless of what the system sound settings are.

**”If system sounds”: All system sounds will be played through both the headset/
headphone and built-in speaker except the system sounds for alarms, SMS alerts,
and Mail alerts.

Chapter 16 Headset Jack Specifications

324 Palm Developer Guide, Palm OS Platform, Rev. J

16.5.2 Treo™ 650 smartphones and later
The usage scenarios in the following table show how Treo 650 smartphones and later
interact with the audio subsystem when playing or recording audio stream(s).

a - Alerts should be sound mixed-in at a lower volume than the active call in progress.

Usage scenario Ringer
switch
sound
on/off

On
active
call?

Telephony
audio

Alerts
(Attention
Manager)

MP3
(application
audio)

High-
priority
system
sounds

1 Base mic/speaker OFF YES Receiver No sounda No sound No sound

2 Base mic/speaker OFF NO No sound No sound No sound No sound

3 Base mic/speaker ON YES Receiver Receivera Mute/hold Receivera

4 Base mic/speaker ON NO No sound Speaker Speaker Speaker

5 Speakerphone
mode

OFF YES No sound No sounda No sound No sound

6 Speakerphone
mode

OFF NO N/A N/A N/A N/A

7 Speakerphone
mode

ON YES Speaker Speakera Mute/hold Speakera

8 Speakerphone
mode

ON NO N/A N/A N/A N/A

9 Headset inserted OFF YES Headset Headseta Mute/hold Headset

10 Headset inserted OFF NO No sound Headset Headset Headset

11 Headset inserted ON YES Headset Headseta Mute/hold Headseta

12 Headset inserted ON NO No sound Speaker and
mute MP3

Headset Speaker
and mute
MP3

13 Bluetooth
headset in use

OFF YES Bluetooth No sound Mute/hold Bluetooth

14 Bluetooth
headset in use

OFF NO No sound No sound No sound No sound

15 Bluetooth
headset in use

ON YES Bluetooth Speaker Mute/hold Bluetooth

16 Bluetooth
headset in use

ON NO No sound Speaker Speaker Speaker

 Palm Developer Guide, Palm OS Platform, Rev. J 325

CHAPTER 17

17. External Hardware Drawings

This chapter explains where to find external hardware drawings for Palm devices and
peripherals.

17.1 Palm™ devices
Available for:
■ Centro™ and Treo™ smartphones

■ Tungsten E2 and Tungsten T5

■ LifeDrive

■ Palm T|X

■ Palm Z22

External Hardware Drawings are provided in IGES or STP format for download at the
Palm Developer Network (PDN) website. To find the external surface drawing for your
device, go to the PDN Knowledge Base and search for “External Hardware Drawing.”
Links to all available device drawings will be returned in the search results.

17.2 Expansion Parts Store
The Expansion Parts Store, hosted by Northstar Systems, offers PDN software and
hardware developers development kits (including hardware drawings) for the
creation of peripherals for Palm products. Supported devices currently include Treo
650 smartphones, Tungsten T5, and many other handheld and mobile manager
devices. The Northstar site includes information on connectors, cables, modem
housings, handheld plastics, as well as SDIO and Bluetooth development tools.

To find the link to the Expansion Parts Store, log into PDN, then use the side
navigation menu to go to develop > get devices > parts.

17.3 Cable and connector drawings
ATL Technologies manufactures cable assemblies and connector systems used with
Palm devices. At their website, ATL provides external hardware drawings in PDF
format for peripherals including the USB sync cable, power cable, Multi-connector,
and a charging cradle.

To find the link to ATL Technologies, log into PDN, then use the side navigation menu
to go to develop > get devices > parts.

Chapter 17 External Hardware Drawings

326 Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

 Palm Developer Guide, Palm OS Platform, Rev. J 327

PART VI

Appendix

This part of the guide provides supplemental reference information.

328 Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

 Palm Developer Guide, Palm OS Platform, Rev. J 329

APPENDIX A

Sample Code

The Sample Code provided in the Palm OS SDK serve as examples to illustrate
programming concepts and API usage. The following table includes a title and
description for each Sample Code included in the Palm OS SDK.

For complete details on each Sample Code, refer to the ReadMe files included in the
Palm OS SDK.

Sample Code Title Description

_CDMAStatus This sample code shows how to retrieve radio
connection status, operator name, and voicemail
number on CDMA phones. It also shows how to get
the base station info on Centro CDMA devices

_GSMStatus Shows how to retrieve operator status, name, and
voicemail count on GSM phones.

_HelperReceiver Shows how to use Palm’s Helper APIs. It shows how
to register, enumerate, validate and execute the
system's helper notifications for SMS, Email, and
WEB.

_HelperSender Shows how to use Palm’s Helper APIs to broadcast
helper notifications for SMS, Email, and Web to
registered applications.

_HTTPLibTest Demonstrates how to use the built-in shared HTTP
Library.

_Keyguard Shows how to activate the Keyguard
programmatically, and also disable it every time
there is an incoming SMS alert.

_LaunchCommands Shows how to use various Phone App launch
commands to dial or show keypad. It also shows
how to launch the Web browser, including in
minimal mode.

_MMSCounter Shows how to register an application for incoming
message notifications and retrieve the number of
unread MMS messages.

Appendix A Sample Code

330 Palm Developer Guide, Palm OS Platform, Rev. J

_MMSReceiver Shows how to use Palm’s Helper APIs to register,
enumerate, validate and execute the system’s helper
notifications for MMS.

_PalmPhotoCapturePreview Shows how to use the Palm Photo Library to use the
Camera interface to capture a photo, preview the
photo and save it to the device's photo album.

_PhoneEventReceiver Shows how to register for Phone Events
PhnEvt***** to receive phone event notifications
from the phone library.

_PhoneInfo Shows how to use the Palm Telephony Library to
display useful information.

_RadioSample Shows how to detect if the radio is off or on, how to
turn the radio on/off, how to query the SIM card for
the phone number of the device and how to check if
the device has service available using the signal
level.

_REMTimer Shows how to programmatically register and put the
device into normal sleep and REM sleep.

_RingTone Shows how to get the list of tones from the system
database, play the tones, and stop the tone play.

_SimpleSMS Demonstrates how to use the built-in shared SMS
Library.

_STETest Shows how to use the Palm Smart Text Engine.

AddEmailtoVersaMail Shows the different methods used to add a newly
composed email to VersaMail (via exchange
manager, sub launch [not supported in VM3.0], UI).

BluetoothMgr This sample demonstrates how to use the Bluetooth
Library including the Bluetooth Manager APIs and
Socket and Service Discovery APIs. It establishes an
ACL connection between two Bluetooth enabled
devices and allows querying for the name of the
connected device. It also allows sending a string
from one device to the other.

BtClientServer Uses the Serial Manager to implement a Bluetooth
application that can be run in either client or server
mode. The application sends files from the client to
the server over Bluetooth.

Sample Code Title Description

 Palm Developer Guide, Palm OS Platform, Rev. J 331

CameraV2 Shows how to use the Camera Manager library.

NOTE: This library may not be available on older
devices.

CameraV3 Shows how to add basic camera/imaging
functionality by using the Camera Manager library.

Conduit Demonstrates how to synchronize between records
on the handheld and records on the desktop.

The conduit includes three applications:

1. MLConduit

2. MLDesktopApp

3. MLDeviceApp

CustomFav Shows how to use the Favorites DB Library to create
custom favorites in the Phone App view (blue grid).

Extended Sound Shows how to use the extended sound manager API,
and features recording, playback, etc.

FileBrowserSample Shows how to use the FileBrowser API to browse
through files on the device and look for text files.

This sample code should be run on Life Drive and
Tungsten T5 devices.

FiveWayV2 Shows how to detect key presses/releases using the
navigation APIs which support 5-way navigation
(top, down, left, right, center).

FotoFinish Shows how to use the photo library APIs and
provides simple photo editing functionality.

FotoFinish2 Similar functionality to the FotoFinish sample
application, except that FotoFinish2 also uses
version 2 photo library APIs.

FullScreenWriting Shows how to use GoLCD APIs that allow the user to
write Graffiti® on and provide input directly from the
screen.

HtmlLibTest68K Shows how to use the built-in HTML library to render
HTML data and display HTML pages on a Palm OS
form.

IRCommunication Shows how to use the Serial Manager to transmit
and receive Raw IR Data and IR COMM data. This
sample code also shows how to wrap and unwrap
the Raw Data in an IrDA packet.

Sample Code Title Description

Appendix A Sample Code

332 Palm Developer Guide, Palm OS Platform, Rev. J

MemoryInfo Shows how to query the amount of free memory in
the dynamic heap and in the DBCache.

MiniADPCM Shows how to encode and decode ADPCM samples
using the Codec Plug-in Manager.

MiniBuzzer Shows how to use the SoundFileStream library to
record and play various audio formats.

MiniGIF Shows how to encode and decode GIF images using
the Codec Plug-in Manager.

MiniImage Shows how to use the image codecs to encode and
decode between various file formats.

MiniMP3 Shows how to use the Codec Plug-in Manager to
play MP3 files.

MiniMPEG4 Shows how to encode YCbCr420Planar and
YCbCr422Planar to MPEG4 video format and decode
MPEG4 video format to YCbCr420Planar format.

NavExample Shows how to create a 5-way enabled app using the
fnav resources. Refer to the rcp file for usage.

NetSelector Shows how to use the NetPref library to iterate
through existing network profiles in the Network
panel and use the NetMaster library to initiate data
connection using a non-default profile.

NVFSTest Shows how to commit database changes to the
NAND drive while application is running and
database is open.

Pushdemo Shows how to set up a connection between a device
(the client) and a PC (the server), and then use that
connection to push packets of data from the PC to
the device.

PmConnectorTest Demonstrates the PmConnector Library APIs. It
shows how to disable automatic detection of serial
devices and how to enable/disable the power_out
pin that supplies power to peripherals that are not
Multi-connector compliant.

SerialCommunication Shows how to use the Serial Manager to transmit
and receive serial data. It also shows how to detect a
serial peripheral and how to Power On/Off the Multi-
connector POWER_OUT pin. It additionally
demonstrates how to work around the flow control
problem on Tungsten T3.

Sample Code Title Description

 Palm Developer Guide, Palm OS Platform, Rev. J 333

StatusBar Shows how to detect the Slider status on Tungsten
T3. It also shows how to detect the screen rotation
on Tungsten T3 and Tungsten T5.

TickStock TickStock is a sample application that demonstrates:

■ How to detect and handle incoming call
interruption

■ How to detect if device is using EvDO connection

■ Downloading data while keeping UI responsive

■ Implementing [background] HTTP request as a
state machine

This application connects to Yahoo! Finance website
and downloads the HTTP content until it finds the
latest price of the queried stock.

Treo650PowerOut Shows how to power on/off the Multi-connector
POWER_OUT pin on Treo 650.

TungstenT5FlowControl Shows how to enable/disable flow control on the
Tungsten T5 device.

TungstenT5SwitchAudio Shows how to switch audio from speaker to Multi-
connector and from Multi-connector to speaker on
Tungsten T5.

TungstenT5SwitchAudioAlt Shows how to switch audio from speaker to multi-
connector and from multi-connector to speaker on
Tungsten T5.

VersaMailAccConfig Shows how to configure email accounts using the
__MMDevice database.

VersaMailAttchmntPlugin Versamail attachment plug-in for text plug-ins.

VersaMailFontApp Demonstrates the VersaMail Font Manager APIs. It
shows how to change the size, style or font of text.

Sample Code Title Description

Appendix A Sample Code

334 Palm Developer Guide, Palm OS Platform, Rev. J

This page intentionally blank

335

Index

Numerics
16-bit color 35, 36, 37, 63, 262
1xRTT network parameters 75
1xRTT vs. EvDO connections 112
5-way navigator 34, 36, 37

5-way Navigator and Keyboard API 157–
161

default navigation 159
hardware matrix 34, 36, 37
keystroke equivalents 241
Option and Shift key APIs 140
overview 158
rocker (on Tungsten T5) 165

68K PACE debugger nub 237

A
Accept headers 203, 276
Accept-Language string 276
ACCESS (PalmSource)

Developer Program 22
documentation 19

access points (handhelds) 93
accessing

data 31, 144
file volumes for Tungsten 153
internal file volumes 152
tips 181
tutorials 181
web pages 200, 201, 211, 275

Acrobat files 203
acronyms for use with Blazer 276
action buttons 157, 161
ADAPTER_ID parameter 296, 298
adding

email accounts in VersaMail 213
header images in web pages 271
images to training tools 182, 187, 194
images to web pages 267, 269
insertion points 180
network profiles 93
plug-ins 220
ring tone management applications 69
ring tones 69, 71
sound databases 69
system gadgets 279, 280

trusted certificates 88
web pages 261

addrAppNotificationCreateNewRecord
command 111

address information in the Message database
122

Adobe Acrobat files 203
AGND parameter 285, 297, 298
alarm management tool 69
alerts

alert tones 69
Attention Manager 324
Debug Prefs button options 245
Debug Prefs settings 243
displayed by the Debug Simulator 239,

242
for extreme low memory condition 154
in SMS messages 115
SMS alert 329

ALT tag 267, 269
always-on data session 112
AMR 68
AOUT_MIN parameter 291
apn key (VersaMail) 215
AppCmdLaunch.h header file 218
application focus mode 157, 159
applications

assigning secondary button features 159
camera slider notifications and 64
changing databases from 145, 151
compatibility specifications by device 41,

43
creating ring tone management 69
customizing navigation 162
displaying certificates from 88
displaying formatted help for 181
enabling tethered mode for 125
for Treo smartphones 29
full-screen writing and 196
HTTP requirements and third-party 85
icons 127, 128
incoming message events and 117
key presses and 140
launching Network Preference dialog from

79

Index

336 Palm Developer Guide, Palm OS Platform, Rev. J

linking to web pages 211, 212
NetLib library interface and 86
opening bitmap files and 127
outgoing email and 216
registering file types for 127
registering with Exchange Manager 220
running on multiple devices 166, 176
sleep-request notifications and 135, 136
SMS messages and 115, 120, 121
stub 193
switching volumes and 128
TCP sockets and 85
updating GSM indicator from 102
updating Operator indicator from 102
updating Voicemail indicator from 102

ARM debugger nub 243, 244, 245
AT command 125
Athena connector See Multi-connector
attachments

email 213, 218, 220
serial peripheral 304

Attention dialog box 175, 176
Attention Manager 139, 324
audio 66–72, 322

API 66
applications 141
codecs 205
detecting 289
detecting peripherals 289
devices

detecting 292
detection timing specifications for 294
interfacing with 296, 298
requirements for 291

embedded audio playback 263
files 141
output 289, 319, 320
pause and resume 67
peripheral devices 289
playback 67, 263
recording 67
speaker architecture 319
streaming audio and video 204, 264
Tungsten handhelds 289

detecting audio peripherals for 292,
294

authentication
HTTP library 85, 87, 88
SMS 116
web server for Blazer 202

auto-keyguard mode 140
automatic message reassembly 120
auto-off

timeout value 135, 139
timer (REM sleep) 136
timer reset 139
wake/sleep loop on Palm TX 308

B
backward compatibility

DIA 197
FrmNav API calls 166
Palm OS network preferences 79

batteries 34, 36, 37
battery

conservation with REM sleep 135
DBCache issues 151
external dialogs 61
gadget 279
keystroke equivalents 241, 242
low battery alert 323
NVFS 155
power management 227
soft reset 237

beaming
bookmarks 199
digital rights management 207
incoming 127
launch debugger 244

BGSOUND tag 263
binary

loading the binary in CodeWarrior 247
messages 117, 120
segmentation 120

bitmap
codec 56
data returned by Camera Manager 63
family 127
File Browser API 127
files 127, 128
NVFS 156
STE rendering engine 134
wireless bitmap graphic format 277

Blazer web browser 199–212, 261–278
designing for 261
displaying application tips and 193
displaying web pages and 275
encoding formats for 275
extending HTML support for 277
international support for 275–276
overview 200, 273
saving images and 206
streaming audio and video 204
Treo smartphone support for 29
unsupport HTML elements for 272

Bluetooth

Index

 Palm Developer Guide, Palm OS Platform, Rev. J 337

1.2, resolves car kit issue 30
Blazer Palm OS Network Library 200
BluetoothMgr Sample Code 330
by device 35, 36, 38
development tools 19, 325
gadget 279, 280
headset in use 324
headsets 319
on-device debugging 236
option (email) 216
radio status for Centro 279
Ring Tone Manager 319
VersaMail 216

bookmarks
beaming 199
Blazer 201, 263

boot code 144
breakpoints

CodeWarrior 246, 247, 249
PalmDebugger 254

broadcasting sleep-request notifications 135
bulleted lists 189
button

5-way navigator 34, 36, 37, 158
action 157, 161
Center 176
Debug Prefs options 245
Down 177
events 135, 159
keystroke equivalents 241
New Folder button in File Browser API 131
Option and Shift 140
Play, browser 264, 266
power 135, 139
radio 267
secondary features 159
Up 177

button mapping 165–180

C
cable configurations 283
cache 147

database issues 151
DBCache 32, 145, 154
difference between NOR and NAND flash

memory 147
size 152, 275
web pages 274, 275

Call Log view 105, 107
callouts 187
camera

by device 35, 37, 38
Camera Manager 62–64

Camera Manager known issue 73
CameraV2 Sample Code 331
CameraV3 Sample Code 331
CamLibControl command 62
color-depth mode 63
configuration dialog box 63
Photo Library 59
slider 64
slider notifications 62, 64

CameraLib 64
Caps Lock key 140
capturing images 59, 63
cascading style sheets 201, 202
case sensitivity 190, 215
CCSM

database 75
table support 77

CDMA
_CDMAStatus sample code 329
by device 34, 35
CDMA Library 101
CDMA/1xRTT radio 29
Centro smartphones xiii, 27
media codec formats 56
NetPref Library 75
Phone library description 99
smartphone 117, 120
Telephony APIs 99, 101
Treo smartphones 29

Cell ID 103
cell width attributes 267
Center button 175, 176
Centro smartphones 27–28

CDMA xiii, 27, 103
changes to PmSysgadgetlibCommon.h

279
features not supported 28
GSM xiii, 27, 34, 103
hardware described 34
hardware features 34
HsPhoneGSM.h for Centro GSM smart-

phones 103
location based services 103
SDIO support 39
software library compatibility 40
What’s New xiii

Centro smartphones. See also smartphones
certificates 88, 202, 274
changing

databases 151
changing databases 151
character

encoding 117

Index

338 Palm Developer Guide, Palm OS Platform, Rev. J

Graffiti 196
in a URL 133
ISO-8859-1 character set 275
limits for messages 120
limits for SMS messages 116
message text 122
Palm OS character set 275
sets 275
shortcut 237, 248
substitution strings 119
Universal Character Set 277
UTF-8 character formats 275
values, 5-way button 158
virtual 140, 168, 169, 170, 171, 241

check boxes 161, 267
cHTML web pages 199
chunked encoding 86
CIF formats 63
cipher suites (SSL) 87, 88
class-level detection mechanism 292, 293
code compiling 251
Codec Plug-in Manager 50–58, 332
CodecMgrEncodeDecode 72
codecs

Codec Plug-in Manager 50–58, 332
codec wrapping 52
formats by device 56
linked lists 51
media formats 50
MiniGIF sample code 332
MiniImages sample code 332
streaming content 205
Tones library 68

CodeWarrior 246–249
CodeWarrior Development Studio 23
debugging troubleshooting tips 249
loading the binary 247
on-device debugging 248
setting breakpoints 246
simulator debugging 247

color-depth mode 63
communications 201, 273

data communications libraries by device
40, 42

SMS library 116
compatibility logo program 23
compiling code 251
Compose form (email messages) 216
compression

GZIP and Zlib in HTTP library 86
JPEG 56
MPEG 4 56
profile 205

SMS messages 117
connections

data ports and 125
keep-alive 86
loading web pages and 262
networks and 79
phone calls and 102
serial 286
speed, Internet 262
web sites and 85

connectionType key (VersaMail) 215
Console mode, debugging 237, 248
Contacts application 111
content handler 203
Content-Type string 275, 276
cookies 85, 274

Blazer 274
persistent 274
session 274

CPM. See Cryptography Provider Manager
cradle 244, 283, 292, 301, 302, 307, 325
createTipsRsc utility 190, 192
creating

databases 151
focus rings 164, 179
folders 131
network profiles 93
plug-ins 220
ring tone management applications 69
sound databases 69
topic titles 182
web pages 261

cryptography 85
Cryptography Provider Manager 87, 88
CSS. See cascading style sheets
CtlDrawControl function 164
custom event handlers 163
Customer Service and Support, Palm 19
customizing navigation 162

D
data

accessing 31, 144
always-on session 112
applications 29
caching 147, 154
encoding and decoding 86, 119, 275
encryption 87, 93, 117, 274
ports 125
store 152
streaming 91

data communications. See communications
databases

Index

 Palm Developer Guide, Palm OS Platform, Rev. J 339

archived ring tones and 69
cache 151
changing 145, 151
committing changes to 151
creating 151
DBCache 154
MMDevice 214
navigation resources and 162
NetPref library enhancements and 75
opening 145, 154
resource 152
SMS messaging and 115
VersaMail applications and 213, 219

DataMgr 151
dataSesstionStatus 112
date picker 273
DBCache 32, 145, 147, 154
Debug mode 237, 248
debugger nubs 236
debugging 235–255

HTML library 97
on-device debugging 235, 248
post-crash debugging 244
Simulator 242
Simulator vs. on-device debugging 235
source code 246
tests 245
tools 23

DebugPrefs application 243–245
default directory 128, 130
default navigation 159, 163, 178
deferSleep 135, 136
deleting

focus rings 179
NBS messages 115, 118
network profiles 93
ring tone databases 70
ring tones 69

descriptor files 206
Designed for Palm Products (DFPP) 20, 23
designing

for mobile devices 262, 267, 269
web pages 261–274

desktop environments 31, 128, 266
DET_DBC parameter 295
DET_PWR_DLY parameter 295
DET_RXTX_DLY parameter 291, 296
DET_SAMP1 parameter 295
DET_SAMP2 parameter 295
detaching peripheral devices 293
detecting

audio 289
audio peripherals 292, 294

device hardware 165
EvDO vs. 1xRTT connections 112
key presses 140
REM sleep mode 137

Developer community forums 23
Developer Guide 17
device discount program 20
Device Loaner Program 23
device loaner program 20
DGND parameter 296, 298
diagnostics mode, Transparency API 125
Dial Pad 105, 108
dialing phone numbers 109, 278
dialog boxes 129, 159, 161
digital certificates 88, 274
digital rights management 207
dimensions

battery gadget 279
Bluetooth gadget 280
icon 127
signal gadget 280
toolbar and scroll bar 262

directional rocker keys. See 5-way navigator
directory paths 18, 128, 129
disabling insertion point 180
display engine 133, 134
displaying

application tips 193
certificates 88
email attachments 220
errors 244
formatted help 181
images 269, 271
Keyguard dialog box 140
Open dialog boxes 129
tutorials 193
web pages 212, 267, 272

displays
See also screens
compatibility for Tungsten 31
scrolling multipage 132
specifications for 35, 36, 37
turning on 139
waking up 139

DmCloseDatabase 151, 155
DmNewRecord 151, 155
DmResizeRecord 151, 155
DmSyncDatabase 151, 155
documentation

ACCESS Developer Program 19
feedback 20
Palm Customer Service and Support 19
Palm Developer Network 23

Index

340 Palm Developer Guide, Palm OS Platform, Rev. J

Palm OS SDK 24
dots per inch (DPI) 35, 262
Down button 177
download manager 203, 206, 207
download restrictions 206
downloading

ACCESS (PalmSource) SDK 24
DebugPrefs application 243
files 203, 207, 274
Palm OS SDK 24
PalmDebugger 250
PilRC resource compiler 162
PIM SDK 47
ring tones 203
training images 196
web pages 199, 270
zLib libraries 28, 30

drawing focus rings 164, 179
drawing UI objects 164, 179
drives 153
drop-down menus 267

E
editable fields 159, 160
email

adding to VersaMail folders 213
applications 115, 266
attachments 218, 220
Bluetooth 216
launch commands 216
linking addresses to applications 132
mailto command 266
outgoing 216
plug-ins 213
retrieving 115
saving messages 216
sending 141, 266
sending attachments 220
SMS 216
VersaMail 213–221

emailAddress key (VersaMail) 215
EMBED tag 263, 264, 265
Emulator 23, 24, 247, 251
encoding 86, 117, 119, 275
encoding video for streaming 73
encryption 87, 93, 117, 274
enterprise environments 213
errors 151, 239, 242, 243, 244
EvDO 29, 112
event handlers 163
EvtGetEvent events 139
EvtResetAutoOffTimer events 139

Exchange Manager 28, 30, 127, 128, 203, 217,
220

exgRegEditExtensionID constant 127
ExgRegisterDatatype structures 127
expansion cards 203, 266, 278
Expansion Manager 153, 225
expansion Multi-connector 283–313
Expansion Parts Store 19, 325
expCapabilityHidden constant 153
expCapabilityNonRemovable constant 153
ExpCardInfoType structures 153
external audio output device 289
external dialogs 61
External Hardware Drawings 325

F
factory reset 257
fallback services 75
FAT files 147, 152
fatal errors 239, 243
Favorites

application 127
CustomFav sample code 331
icon 127
launching the Phone application in the Fa-

vorites view 110
view 105, 106, 110

fax services 28, 30
feature pointers 154, 252
fields 159, 177, 180
file

allocation tables (FAT) 147, 152
downloading 203, 207, 274
name extensions 128, 130, 131
names 128, 130, 190
opening 127, 128, 129
paths 128, 129
saving 130
selecting 130
storage 153
types 203
uploading 266
volumes 147, 152, 153

File Browser API 127–131
file keyword, integration tag 278
FileBrowserLib68K.h header file 128
FileBrowserLibClose function 128
FileBrowserLibCommon.h 127, 129, 130
FileBrowserLibOpen constant 129
FileBrowserLibOpen function 128
FileBrowserLibParseFileURL function 128
FileBrowserLibShowOpenDialog function 129

Index

 Palm Developer Guide, Palm OS Platform, Rev. J 341

FileBrowserLibShowSaveAsDialog function
129, 130, 131

fileType parameter 128, 130
First-chance exception, PalmSim.exe 242
flags 130

5-way navigator 159
File Browser 130
NVFS 153
SMS header information 122
UI 75

flash memory 144, 145, 147
FldDrawField function 164
FldGrabFocus function 180
FldReleaseFocus function 180
fnav resources 159
focus

application focus mode 157
change events 158
drawing for Treo 164
initial 161, 179
moving focus for Tungsten 161
navigation 179
object focus mode 157, 158
rings 164
rings, deleting 179
tapping 159
Tungsten 161
UI 179

folders 130, 131, 182
font

colors 132
database (VersaMail) 219
emoticons 132
graphics 132
information 219
library (VersaMail) 213, 219
picker (VersaMail) 213, 219

form tag 267
formatted help 181
formNavRscType function 162
forms 162, 267

HTML 267
modal 163
nonmodal 161, 163

forums 23
Frequently Asked Questions (FAQs) 19, 23
FrmDispatchEvent function 158, 163
FrmGetFocus function 180
FrmHandleEvent function 163, 179
FrmNav function 166
FrmNavDrawFocusRing function 164, 166
FrmNavGetFocusRingInfo function 164, 166
FrmNavObjectTakeFocus function 166

FrmNavRemoveFocusRing function 164, 166
frmObjectFocusLost events 158, 163
frmObjectFocusTake events 158, 163, 179
frmOpenEvent events 279, 280
FrmSetFocus function 163, 179
FrmSetNavEntry function 159, 160, 178
FrmSetNavOrder function 160, 178
FrmSetNavState function 159
FtrGet function 151, 219
FtrSet function 219
Full-Screen Writing API 196

G
gadgets

adding 279
battery 279
Bluetooth 279
libraries 279
overlapping 106, 279
signal 102, 280
system gadgets 163, 279
updating 279

Garnet OS Developer Suite 22, 255
gateways 120
generating symbolic information 247, 248, 251
Getting started 21
GoLCD Manager API 196
goLcdGraffitiMode constant 196
GoLCDSetBounds function 196
goToCreator field 127
GPRS/EDGE radio 27, 29
Graffiti 2

Blazer 273
by device 34, 36, 37
Full-Screen Writing API 196
FullScreenWriting sample code 331
Graffiti Shift Indicator (GSI) 140, 196
writing area 197, 262

graphic element design guidelines 194
graphics 261, 262

See also images
Gremlins 240
grounding devices 286
GSM

_GSMStatus sample code 329
alphabet 117, 119
Centro smartphones xiii, 27, 34
connected indicator 102
devices 117
HsPhoneGSM.h for Centro 103
messages 120
network parameters 75
Phone library description 99

Index

342 Palm Developer Guide, Palm OS Platform, Rev. J

Telephony APIs 101
updating indicator 102

GSM/GPRS network parameters 75

H
HandheldFriendly

keyword 277
tag 263

handhelds 31, 37, 283
See also Tungsten handhelds; Zire hand-

helds
Handspring extensions 180
hard reset 145, 147, 230, 242
hardware 34, 36, 165

Centro smartphones 34
described 34
detecting device 165
external drawings 19, 325
interfacing with smart peripherals 308
LifeDrive mobile manager 36
Palm T|X handhelds 36
Palm Z22 37
peripheral detection 292
smartphone audio 319
Treo smartphones 34
Tungsten 36
Zire handhelds 37

hash algorithms 88
header files 28, 30, 31
header information, SMS 121, 122
headphones 289
headsets 289, 292, 294, 319
heap 144

corruption 254
DBCache 147
dumps, PalmDebugger 254
heap ID 152

help, formatted 181
Helper API, MMS 141
helperAppID parameter 141
HelperNotifyExecuteType structures 141, 142
HelperServiceMMSDetailsType structures 142
HelperServiceMMSObjectType structures 142
high-resolution devices 219, 262
home page (web) 201
Home/Roaming network configurations 75
horizontal header images, Blazer 271
HotSync

application 79
Interrupt pin 288
operations 75, 219, 288

HOTSYNC parameter 296, 298
HS_INL parameter 288

HS_OC parameter 288
HsAppLaunchCmd.h header file 107, 111
hsAttrDisplayOn events 137
HsAttrGet function 137
hsAttrKeyboardLocked events 139, 140
HsAttrSet function 139
hsChrKeyboardLock events 139
HsCreators.h header file 107
hsFtrIDNavigationSupported events 165, 166
HsNav function 166
HsNavDrawFocusRing function 164, 166, 179
HsNavGetFocusRingInfo function 164, 166
HsNavObjectTakeFocus function 166, 179
HsNavRemoveFocusRing function 164, 166,

179
hsNotifyRemSleepEvent 136
hsNotifyRemSleepRequestEvent 136
hsNotifyRemSleepRequestEvent events 136
hsNotifySetInitialFldStateEvent events 180
HsPhone.h header file 99
HsPhoneGSM.h 103
HTML

cHTML web pages 199
encoding 275
extending 277
files 182
forms 267
HtmlLibTest68K sample code 331
library 95, 97
parser 133
renderer 97
specifications 272
tag 273
unsupported elements for Blazer 272
web pages 199
xHTML web pages 199

HTTP
_HTTPLibTest sample code 329
client profiles 85
headers 274, 276
HTTPLibTest sample code 91
library 85–91
link 73
protocol 85
requirements for third-party 85
stack 201

httpErrorLibraryAlreadyOpen 87
HTTPLibTest project 91
HTTPS connections 85
hypertext links 267
HyperText Transfer Protocol. See HTTP

Index

 Palm Developer Guide, Palm OS Platform, Rev. J 343

I
icons 127, 128

dimensions 127
labeling 127
lock 274

image
files 127, 128, 272
formats 272
horizontal header for Blazer 271
resolution 63

ImageLib 65
images

adding header in Blazer 271
adding to training tools 182, 187, 194
adding to web pages 267, 269
as text 270
Camera Manager for 62, 63
capturing 59
designing web pages and 261, 262
displaying 269, 271
downloading training 196
flagging for download 206
icons and 127
JPEG 206
Mini Image sample code 332
mobile devices and 269
previewing 63
refreshing 275
saving 206
scrolling through 271
sending 141
spacers 267, 271

imaging
applications 141
multimedia features 58–64
processor 269

incoming messages 116, 117, 121
incoming voice calls for Treo 700p 113
incomingPort key (VersaMail) 215
incomingServer key (VersaMail) 215
indented lists 189
index.html file 182
INet library 28, 30, 31
InitFontUI method 219
initial focus 161, 179
inking 196
input

audio 322
File Browser API 129
Graffiti 2 input areas 196
input areas on Tungsten 165
Option and Shift keys 140
text input, Blazer 267

insertion points for fields 180
interaction mode 157
interface connectors 35, 37, 38
internal drives 153
internal file volumes 153
international support for Blazer 275–276
Internet connection speed, Blazer 262
Internet Service Providers 116
Internet, Blazer 199
Interrupt pin (HotSync) 288
IOTA application 77
ISO-8859-1 character set 275
ISPs 116
IUSB_VBUS_H parameter 286

J
JavaScript 182, 201, 261, 266
JPEG 50, 56, 206, 272, 277
JPEGLib, deprecated 64

K
keep-alive connections 86
key

apn (VersaMail) 215
Caps Lock 140
Center button event 175
events 135, 139, 158
exchange 87
Option key 140
Option Lock 140
presses 139, 140, 159, 161

keyboards 34, 36, 37, 165
keyDown events 158, 175
Keyguard 139–140
keyHold events 158
keystroke equivalents 241
keyUp events 158
kFileBrowserLibFlagNoFiles constant 130
kFileBrowserLibFlagNoFolders constant 130
kFileBrowserLibFlagNoNewFolder constant

130
kFileBrowserLibFlagOneVolume constant 130
kFileBrowserLibFlagPromptOverwrite

constant 130
kFileBrowserLibFlagRequireExtension

constant 130
kFrmNavObjectFlagsSkip constant 159
Knowledge Base 19, 23
Known issue with Camera Manager and

streaming on Treo 700p smartphones
73

kPmConnectorClass Notifications 44

Index

344 Palm Developer Guide, Palm OS Platform, Rev. J

kSysAppLaunchCmdOpenFile constant 128

L
labeling icons 127
large icons 127
launch codes (SMS messages) 116
launch commands (VersaMail) 216, 218, 220
launching

Blazer web browser 193
Contacts application 111
email applications 266
Network Preference dialog from applica-

tions 79
Palm web browser (Blazer) 211, 212
Phone application 107–110
VersaMail application 218

LBS 103
LCD on/off notification 137
LCD Overlay 60–62
Legacy profiles 79
lessons

creating 182, 186
naming 184

libraries
compatibility specifications for 40
data communication libraries by device

40, 42
downloading 28, 30
loading 75, 129
multimedia described 49
network services and 93
not supported 28, 30, 31
security libraries 274
system gadgets and 279
telephony 99
Treo smartphones and 30
web browsing and 85, 86, 88

library 68
LifeDrive mobile manager

features 32
hardware described 36
performance issues 32

LifeDrive mobile managers
features not supported 32

Link walking 97
linked list of codecs 51
linked list of format pairs 51
linking examples (NetPref) 75
linking to web pages 212, 267
links

in Blazer 267
in streaming content 264

lists 189, 267

loading
File Browser library 129
NetPref library 75
the binary in CodeWarrior 247
VersaMail Font library 219
web pages 262

location based services 103
lock icon 274
logins (networks) 77
logo compatibility program 20
logo program (DFPP) 23
losing power 151
low-resolution devices 219
LstDrawList function 164
Lz77Mgr.h header file 28, 30, 31

M
MailAddRecordParamsType structures 218
MailAddRecordsParamsTypePlus structures

218
mailto command 266
main menu, tutorial 194
main views 163
marketing programs 20
markup languages 201
MD5 hash algorithm 88
Media File Formats 205
media formats (codec) 50
MemHeapFreeBytes function 152
memory 144, 203
memory architecture, NVFS 144–150
memory, by device 34, 36, 37
menu page 182
menus 182, 194, 267
message database 115, 118, 119, 121
messages 116

automatically reassembling 120
character limits for 120, 121
composing email 216, 218
encoding SMS messages 119
events 117
incoming 121
MMS devices and 141
NBS 115, 121
outgoing 121
receiving incoming 117
segmenting 120
sending 115
SMS 115
storing 121
updating list of 118
verifying integrity of 88
voicemail and 102

Index

 Palm Developer Guide, Palm OS Platform, Rev. J 345

Messaging application 141
MMS devices and 141
SMS devices and 115, 120

messaging services 115
Metrowerks CodeWarrior 246–249
microSD xiii, 27
MIDI 68

files 263
ring tone 203
Ring Tone DB 69
sound formats 69
TonesLibAddMidiTone 71

MIME type 128, 130, 206, 220
MMDevice database 213, 214
MMDevice record keys 215
MMPRO_ADD_MESSAGE_WITH_ATTACHME

NT command 218
MMPRO_LAUNCH_CODE command 218
MMPRO_PLUGIN_EXTENDED_QUERY_LAUN

CHCODE command 221
MMPRO_PLUGIN_GET_INFO_LAUNCHCODE

command 220
MMPRO_PLUGIN_QUERY_LAUNCHCODE

command 220
MMPRO_PLUGIN_RECEIVE_LAUNCHCODE

command 221
MMPRO_PLUGIN_SEND_LAUNCHCODE

command 221
MMProLaunchStruct structures 218
MMProLaunchStruct2 structures 218
MMS

_MMSCounter sample code 329
_MMSReceiver sample code 330
helper function APIs 141
Helper service providers 141
Messaging application 141
MMSHelperCommon.h header file 141
MMSReceiver 141
MMSSender 141
send requests 142
service providers 142

mobile devices 29, 115, 262
mobile originated messages 116
mobile terminated messages 116
mobile.palm.com 262
modal forms 159, 161, 163
modems 125
MP3

Codec Plug-in Manager 50, 57
example of creating ringtones 71
headset jack specifications 315, 322, 324
MiniMP3 sample code 332
Ringtone database 70

Sound File Stream library 66
streaming content 205
support for Zire 33
Tones library 68

Multi-connector 283–313
Multi-connector events 44
multiline fields 177
multimedia 49–72

features on handheld devices 42
features on Palm smartphones 40
files 207
libraries 49
video playback 72

Multimedia Messaging Service. See MMS
messages

multipage displays 132
Multipurpose Internet Mail Extensions. See

MIME type
multisegmented messages 116, 118, 120
music playback 29, 30, 33, 320

N
naming icons 127
NAND flash memory 144–157
Narrow Band Socket. See NBS messages
navigation 160

(default) 159, 163
buttons 241
customizing 162
events 158, 162, 163
focus 179
information 178
macros 177
order 178
order of UI objects 160
resources 162, 178

Navigational API 165
navigator buttons 34, 36, 37, 140, 158
navigator, 5-way. See 5-way navigator
NBS messages 115, 118, 121
NetLib

library interface 86
wrapper function callbacks 86

NetMaster library 77
NetPref library 75, 77
NetPrefUtils package 75
NetServices library 93
network 75, 77, 125

connections 102
preference database 75
profiles 77, 79, 93

Network Preference
database 77, 79

Index

346 Palm Developer Guide, Palm OS Platform, Rev. J

panel 77–79
New Contact window 111
New Folder button 131
Newsletter 23
Non Volatile File System. See NVFS
nonmodal forms 159, 161, 163
nonremovable volumes 153
NOR flash memory 144, 147
normal sleep deferral 135
Northstar Systems 19, 325
notification loop 103
numbered lists 189
Nutshell installer 207
NVFS

API 144–155
architecture 144–150
checking for 151
guidelines for developing 151

O
object focus mode 157, 158
OBJECT tag (Blazer) 264
On-device debugging using CodeWarrior 248
Open dialog box 128, 129, 130
Open URL dialog box 278
opening

databases 145, 154
files 127, 128, 129

Operator’s Name indicator 102
Optimized mode (Blazer) 262
Option keys 140, 159
Option Lock key 140
optionKeyMask events 159
organizer 29
Outbox (VersaMail) 216
outgoing

email 216, 218
SMS messages 121

outgoingPort key (VersaMail) 215
outgoingServer key (VersaMail) 215
output

redirecting audio 319, 320
Treo smartphone audio subsystems and

322
Overlapping gadgets 106, 279
overriding default navigation 163

P
PACE debugger nub 237, 245
page keys 158
Page Properties dialog box 263
page scrolling 177

paging 177
Palm Customer Service and Support 19, 105,

106
Palm keyword 277
Palm libraries 40
Palm Multi-connector. See Multi-connector
Palm OS

alphabet 119
character set 275
Developer Suite (PODS) 22, 255
downloading SDK 24
Notification Manager 226
organizer 29
Palm OS Programmer’s API Reference 19
Palm OS Programmer’s Companion 19
security libraries 274
simulator 251
Software Development Kit (SDK) 17, 21,

224
software for handhelds 42
software for Palm smartphones 40
system Helper API 141
Tone DB 69

Palm OS Developer Suite (PODS) 22, 255
Palm Ring Tone manager 206
Palm Software Development Kit (SDK) 24
Palm T|X handhelds

hardware described 36
software specifications for 42

Palm web browser (Blazer) 85, 199, 201, 212
Palm Z22 organizer

hardware described 37
software specifications for 42

Palmcall keyword 277
PalmCameraSlider.h header file 62, 64
PalmCodecFormat.h header file 50
PalmDebugger 250–254

commands 252
heap dumps 254
keyboard shortcuts 254

PalmGoLCD.h header file 196
PalmNetServices.h header file 93
palmNULLCodecID 50
palmOneCamera.h header file 62
palmOneCameraCommon.h header file 62
palmOneCodecFormat.h header file 50
palmOneCodecPluginMgr.h header file 50
palmOneCreators.h header file 111, 137
palmOneNavigator.h header file 177
palmOnePhoto.h header file 59, 60
palmOneSGHiResFonts.pdb 219
palmOneSGLowResFonts.pdb 219
PalmRC utility 192

Index

 Palm Developer Guide, Palm OS Platform, Rev. J 347

PalmSGFontLib value 219
PalmSim.exe 242
PalmSource. See ACCESS
PalmVMLaunch.h header file 218
PalmVMPlugin.h header file 220
PalmWiFiCommon.h header file 93
parameters

media structures and 50
Multi-connector IO parameters 287
NetPref library enhancements and 77

parsing engine 133
parsing file URLs 128
partitions 147
pass-through peripherals 284
password key (VersaMail) 215
PDB files 207, 213
pen events 196
performance

Blazer 274
NVFS 147

peripheral
audio 289
detaching devices 293
detecting audio 292
detecting audio for Tungsten handhelds

292, 294
detection mechanisms 290
detection timing specifications 295
devices 288, 291, 293
hardware detection 292
interfacing with smart peripherals 308
pass-through 284
power devices 288
powering up 292
requirements for Palm smartphones 290
requirements for Tungsten handhelds 290
SDIO creation 229
serial detection mechanisms 292
serial devices 292
serial peripheral devices 291
timing specifications 294

peripherals 19, 325
persistent connections 79
persistent cookies 274
PHL_A_DET parameter 291
PHL_A_DET_HS parameter 291
PHL_A_DET_NHS parameter 291
PHL_LOAD parameter 290
PHL_RX_DOWN parameter 290
PHL_RX_OUTH parameter 290
PHL_RX_OUTL parameter 290
PHL_RXTX_INH parameter 290
PHL_RXTX_INL parameter 290

PHL_SER_DLY parameter 291
PHL_TX_DOWN parameter 290
PhnDataServiceType 112
phnEvtDataSessionStatus 112
phnEvtDisconnectConf 112
phnEvtDisconnectInd 112
phnEvtError events 102
phnEvtIndication events 102
phnEvtMessageInd events 118
phnEvtRegistration events 102
phnEvtSegmentInd events 118, 120
phnEvtStartIncomingCall 112
phnEvtVoiceMail events 102
PhnLib notifications 103
PhnLibBoxInformation function 102
PhnLibCurrentOperator function 102
PhnLibGetMMSUAString() 104
PhnLibRegister 103
PhnLibRegister function 117
PhnLibRegistered function 102
PhnMsgBoxDataType 104
phone

calls 99, 102
events 102
libraries 28, 30

Phone application 107–110
phone numbers

dialing 109, 278
linking to applications 132
prefilling for Dial Pad 108

phoneAppLaunchCmdViewHistory command
107

phoneAppLaunchCmdViewSpeed command
110

phoneto keyword 278
Photos API 59
pictures. See images
PilRC resource compiler 162
PIM SDK 47
PIM structures 47
pinout specifications (multi-connector) 284
pixels 35, 262
Play button 264, 266
playing

ring tones 206
streaming content 264

Plug-in Manager 220
plug-ins 213, 220, 261
PmPalmOSNVFS.h header file 151, 152, 153
PmSndStreamPause 67
PmSndStreamResume 67
PmSysGadgetBtStatusTypeEnum 279
PmSysGadgetLibrary header 279

Index

348 Palm Developer Guide, Palm OS Platform, Rev. J

PmSysGadgetStatusGadgetTypeSet
structures 279, 280

PODS. See Palm OS Developer Suite
point-to-point services 116
pop-up

lists 178
triggers 159
windows 61

ports 125, 286
POUT parameters 288
power

button 135, 139
peripherals 288
power loss 151

POWER_OUT parameter 292, 295, 296, 298
poweredOnKeyMask bit 139
powering up peripherals 292
PRC

applications 207
Creator IDs 53
files 53, 192, 207
PRC-Tools 22

previewing images 63
private volume 147, 152, 153
processors 34, 36, 37
product lines xiii, 27
proxies 85
proxy servers 200
punctuation-mode indicator 196

Q
QCELP 68
QCIF formats 63

R
radio 27, 29, 125

APIs 101
Bluetooth radio status 279
buttons 267
CDMA/1xRTT 29
GPRS/EDGE 27, 29
modem 125

RAM 144
RC4 algorithm 274
reboots 147
reformatting

tables (Blazer) 271
web pages 262, 263

refreshing web pages 274, 275
registering

applications 220
camera slider notifications 64

content handlers 203
icon file types 127
SMS service 117
ZIP files 207

Release Simulator 239
REM sleep

API 135
mode 136–139
request notifications 136, 138

removing
focus rings 179
NBS messages 115, 118
network profiles 93
ring tone databases 70
ring tones 69

rendering engine 134
replyTo key (VersaMail) 215
resets 147, 256–257
resetting auto-off timer 139
resolution 35, 63, 219, 262
resource databases 152
resources 159, 162
rich text formats 132
ring tone 68

archived 69
database 69
downloading 203
management 69
management applications 69
MIDI 203
Palm Ring Tone manager 206
removing databases 70
Ring Tone DB 69
tools 70

roaming 75
rootMailbox key (VersaMail) 215
RPHL_SER_DET parameter 291
RPHL_SER_NDET parameter 291
RSA algorithm 87
RSA-based key exchange 274
RTSP 73
RX_OC parameter 287
RXD parameter 296, 298
RXTX_INH parameter 287
RXTX_INL parameter 287

S
Sample Code 329–333

_CDMAStatus 329
_GSMStatus 329
_HelperReceiver 329
_HelperSender 329
_HTTPLibTest 329

Index

 Palm Developer Guide, Palm OS Platform, Rev. J 349

_Keyguard 329
_LaunchCommands 329
_MMSCounter 329
_MMSReceiver 330
_PalmPhotoCapturePreview 330
_PhoneEventReceiver 330
_PhoneInfo 330
_RadioSample 330
_REMTimer 330
_RingTone 330
_SimpleSMS 330
_STETest 330
AddEmailtoVersaMail 330
BluetoothMgr 330
BtClientServer 330
CameraV2 331
CameraV3 331
Conduit 331
CustomFav 331
Extended Sound 331
FileBrowserSample 331
FiveWayV2 331
FotoFinish 331
FotoFinish2 331
FullScreenWriting 331
HtmlLibTest68K 331
HTTPLibTest 91
IRCommunication 331
MemoryInfo 332
MiniADPCM 332
MiniBuzzer 332
MiniGIF 332
MiniImage 332
MiniMP3 332
MiniMPEG4 332
NavExample 332
NetSelector 332
NVFSTest 332
PmConnectorTest 332
Pushdemo 332
SerialCommunication 332
StatusBar 333
TickStock 333
Treo650PowerOut 333
TungstenT5FlowControl 333
TungstenT5SwitchAudio 333
TungstenT5SwitchAudioAlt 333
VersaMailAccConfig 333
VersaMailAttchmntPlugin 333
VersaMailFontApp 333

sample plug-in 220
Save As dialog box 128, 130
saving

email messages 216
files 130
images 206

screen resolution 35, 262
screens

See also displays
mobile devices and 262
sleep mode and 139
specifications for 35, 36, 37
web pages and 201, 202
Zire handhelds and 33

scroll bars 132, 271
scrolling images 271
scrolling multipage displays 132
SD card xiii, 39, 59, 71, 97, 128, 223
SD slot volumes 153
SDET_ID_TIMEOUT parameter 296
SDIO

application guidelines 226
applications 223
Auto Run 229
card initialization 230
CSA (Code Storage Area) 231
detecting card insertion and removal 228
interrupt handling 228
peripheral creation 229
slot driver 226, 230
software architecture 224
specifications 223
support by device 39

SDK. See Software Development Kit
SDRAM memory devices 144
Secure Sockets Layers. See SSL
security features (web sites) 202
security libraries 274
segmentation

binary 120
information 122
schemes (messages) 120
text-based 120

selector triggers 159
Send command 216
send URL send scheme 216
sending

email 141
email attachments 220
email mailto 266
pictures 141
text messages 115, 116

serial connections 286
serial drivers 125
serial peripheral

detection mechanisms 284, 290, 292

Index

350 Palm Developer Guide, Palm OS Platform, Rev. J

detection, Smart 308–313
devices 291, 292

serial pins interface 287
serverType key (VersaMail) 215
service

centers 116
MMS 141
Palm Customer Service and Support 105
providers 116, 200

session cookies 274
SET-COOKIE header 274
SHA1 hash algorithm 88
shared content library 182
SHIELD parameter 296, 297, 298
shield pins (multi-connector) 286
shift

indicator 196
shift key 140, 159
shift-lock indicator 196
states 180

shiftKeyMask events 159
Short Messaging Service. See SMS
Signal gadget 102, 280
Simulator 235, 238

debugging tips 242
debugging using CodeWarrior 247
features 239
Release Simulator 239
vs. on-device debugging 235

sleep-deferral notifications 135, 136, 139
small icons 127
Smart Text Engine API 132, 133

See also STE
smartphones

accidentally turning on 139
adding system gadgets for 279, 280
audio hardware for 319
audio software for 320
audio subsystems for 321, 324
battery gadget 279
button mapping 165–180
Center button behavior 175
debugging on 248, 249
drawing focus for 164
EvDO 112
Handspring extensions for 180
launching Contacts application for 111
launching Phone application for 107
MMS helper functions API 141
Multi-connector IO parameters for 287
navigating through 165, 166, 177
NVFS API 144
option and shift key APIs 141

Option plus App key mapping 173
page scrolling 177
Palm OS simulator for 251
peripheral requirements for 290
putting to sleep 135, 137
See also Treo or Centro smartphones
signal gadget 280
smart peripherals 308
SMS library 117
software specifications for 40
streaming audio and video 73
text messaging service for 116
Tips and Tutorials 181
waking up 139, 140

SMS
database 115, 118, 119, 121
email option 216
library 28, 30, 115–121
messages 115, 117
messaging application 115, 120
Phone library description 99
service, registering 117
technology 116

SmsLib.h header file 28, 30
SndFileStream 66, 67
SndStream API 66
socket pool 86
soft reset 147, 230, 242, 245, 256
software compatibility by device 40
Software Development Kit (SDK) 17, 21, 24
sound API 66
Sound Manager 66, 320
sounds 322

See also audio; ring tones
source code

compiling 251
debugging 246

spacer images 267, 271
SPKR_L parameter 296, 298
SPKR_R parameter 297, 298
SSL

cipher suites 87
connections 85
library 85, 87

STE
engines 133
library 132

STETest.zip 132
storage 31, 121, 144, 153
store, data 152
streaming

audio and video 73, 199, 204, 264
content 205

Index

 Palm Developer Guide, Palm OS Platform, Rev. J 351

data 91
encoding video 73
links in content 264
MP3 205
playing content 264

stub applications 193
style guide 261–280
style sheets 182, 201, 202

See also cascading style sheets
substitution strings (messages) 119
svcCFACmdQuickEdit parameter 79
symbolic information 247, 248, 251
sysAppLaunchCmdAddRecord command 218
sysAppLaunchCmdExgReceiveData launch

command 127, 128
sysAppLaunchCmdGoTo launch command

127
sysAppLaunchCmdPanelCalledFromApp

command 79
sysFtrNumFiveWayNavVersion constant 165
sysFtrNumUIHardwareFlags constant 165
sysFtrNumUIHardwareHard5Way constant

165
sysFtrNumUIHardwareHasKbd constant 165
sysFtrNumUIHardwareHasThumbWheel

constant 165
sysFtrNumUIHardwareHasThumbWheelBack

constant 165
SysHandleEvent command 135, 139
SysLibFind function 219
sysNotifyExternalDialogClosedEvent 61
sysNotifyExternalDialogOpenedEvent 61
system extensions 41, 43, 125–197
system gadgets 163, 279
systemMgr.h header file 218
SysUISwitch function 217

T
tab order 157, 159, 160
table-rendering engine 267
tables

cell width attributes 267
navigating through 163, 177
reformatting 271
web pages and 262, 267

tags 190, 201
taking pictures 62
tapping 159, 196, 206
TCP sockets 85
tel keyword 278
telephony 99–113

CDMA Library 101
functions 100

GSM APIs 101
header files 28, 30, 100
libraries 99, 100
Telephony Manager 28, 30

testing web pages 275
tethered mode 125
text 270

fields 132, 159, 177, 180
images as 270
input 267
input dialog box 267
messages 115, 116
rich text formats 132
text-based segmentation (messages) 120
text-based tables 267

text messages
See also messages

thumb wheels 165
time picker 273
tips

accessing 181
CodeWarrior debugging tips 249
debugging tips 242
displaying application tips 193
files 182, 190
Tips and Tutorials 181
tutorial 182
utilities 192

TipsTutorialsUtil.zip 192
title key (VersaMail) 215
Tones library 68
TonesLib.h header file 68
TonesLibAddMidiTone 71
TonesLibToneClose() 70
TonesLibToneCreate() 70
TonesLibToneWrite() 70
toolbar 262, 274
topic (for Tutorial, defined) 181
touch screens. See screens
training tools 181, 182
Transparency API 125
Treo 700p smartphone ROW carrier release 30
Treo smartphones

applications 29
Camera APIs and 62
CDMA 29
features described 29
features not supported 30
hardware described 34

Treo smartphones. See also smartphones
trusted root certificates 88
Tungsten handhelds

accessing file volumes for 153

Index

352 Palm Developer Guide, Palm OS Platform, Rev. J

detecting audio 292, 294
drawing focus for 164
enabling network services for 93
features described 31
features not supported 31
flash memory for 144
hardware described 36
moving focus for 161
multi-connector IO parameters for 287
navigating through 158, 165, 177
paging through 177
peripheral requirements for 290
software specifications for 42
TungstenT5FlowControl sample code 333
TungstenT5SwitchAudio sample code 333
TungstenT5SwitchAudioAlt sample code

333
tutorial

accessing tutorials 181
design guidelines 194
displaying 193
files 181
TipsTutorialsUtil.zip 192
utilities 192

TX_OC parameter 287
TX_OUTH parameter 287
TX_OUTL parameter 287
TXD parameter 296, 298
typographical conventions 18

U
UCS 277
UDHs (user data headers) 120
UI flags 75
UI objects

cycling through 161, 162
drawing 164, 179
giving focus to 179
navigation order for 160

unlinking examples (NetPref) 75
unordered message segments 120
unsupported HTML elements 272
Up button 177
updating

GSM Connected indicator 102
list of messages 118
system gadgets 279, 280
web pages 275

uploading files 266
URL 127, 132

bar (Blazer) 262, 274, 278
characters 133
linking to web pages 211

Open URL dialog box 278
parsing file URLs 128
scheme 205

USB cables and connectors 286
USB VBUS devices 284, 286
USB_DN parameter 296, 298
USB_DP parameter 296, 298
USB_ID parameter 296, 298
USB_VBUS_CHG parameter 286
USB_VBUS_L parameter 286
useEncryptedPassword key (VersaMail) 216
useEsmtp key (VersaMail) 216
user agent string 273
user data headers 120
User-Agent string 273
userName key (VersaMail) 216
UTF-8 character formats 275
utilities 192

V
VBUS parameter 296, 298
vchrAutoOff events 135, 139
vchrHardPower events 135
vchrHardRockerCenter events 176
vchrPowerOff events 135
vchrResumeSleep events 135
vchrRockerCenter events 175, 176
VDOCK parameter 296, 298
VDOCK_RTN parameter 296, 298
VersaMail 213

account configurations 213, 214
AddEmailtoVersaMail sample code 330
adding to folders 213
apn key 215
application 216, 220
application API 213
applications and databases 213
Attachment Plug-ins API 220
connection type 215
device APIs 213
emailAddress key 215
Font library 213, 219
Font Picker 219
incomingPort key 215
incomingServer key 215
launch commands 216, 218
launching application 218
option (email) 216
outbox 216
outgoingPort key 215
outgoingServerkey 215
password key 215
Plug-in Manager 220

Index

 Palm Developer Guide, Palm OS Platform, Rev. J 353

replyTo key 215
rootMailbox key 215
serverType key 215
title key 215
useEncryptedPassword key 216
useEsmtp key 216
userName key 216
VersaMailAccConfig sample code 333
VersaMailAttchmntPlugin sample code

333
VersaMailFontApp sample code 333

vertical order 160
VFS Manager 225
vfsErrVolumeFull 155
vfsIncludePrivateVolumes constant 152, 153
vfsInvalidVolRef constant 128, 129
VFSRegisterDefaultDirectory function 130
vfsVolumeAttrNonRemovable constant 153
VFSVolumeEnumerate function 152
video

Camera Manager 62, 63
codecs 205
encoding 73
playback 72
streaming 199
streaming embedded in Blazer 264

views 163
Virtual File System (VFS) Manager 225
voice recordings 66
voicemail

interrupting data calls 78
voicemail indicator 102
voicemail messages 102

volRefNum constant 128, 129
volume

applications switching 128
partitions 147
private 147, 152
reference number 152

volumes, accessing internal file 152
VPHL_SER_DET parameter 291

W
WAP HTTP client profiles 85
WAP stack 201
warm reset 256
WAV 68
Web Browser API 199
web browsers 88, 200, 211, 273

See also Blazer web browser; Palm web
browser

web browsing 29, 201, 269
web pages

accessing 201, 211, 275
cache 274, 275
creating 261
designing 261–274
displaying 212, 267, 272
downloading 199, 270
linking to 211, 212, 267
loading 262
reformatting 262
refreshing 274, 275
tables 262
testing 275
unsupported elements and 272
updating 275
viewing titles of 263

web sites 202, 261, 275
Wi-Fi

LifeDrive 32
Net Services API 93
Palm handhelds, by device 36
panel 93
software libraries, by device 40, 42

windows
dialog boxes 159
pop-up 61

WinModal function 159
wireless

data applications 29
features by device 35, 36, 37
fidelity functionality 93
service providers 200, 207

WML
forms 267
web pages 199, 201, 276

wrapper file formats 205
wrapper functions 128
writing areas 196
writing. See Graffiti 2

X
xHTML web pages 199
XML documents 182, 190
XML tags 190
XRD files 192

Y
YUV color model 61

Z
ZIP files 207
Zire handhelds

camera slider notification for 64

Index

354 Palm Developer Guide, Palm OS Platform, Rev. J

features not supported 33
hardware described 37
navigating through 177

zLib library 28, 30

This page intentionally blank

	Palm® Developer Guide, Palm OS® Platform Software and Hardware Rev. J April 30, 2008
	Contents
	What’s New
	What’s new in Centro™ smartphones
	New Cell ID APIs

	1. Overview
	1.1 How this guide is organized
	1.2 Typographical conventions
	1.3 Additional documentation and resources
	1.3.1 Palm® Customer Service and Support
	1.3.2 PDN Knowledge Base
	1.3.3 ACCESS® documentation
	1.3.4 Expansion Parts Store
	1.3.5 Cable and connector drawings

	1.4 Palm® developer marketing programs
	1.4.1 Designed for Palm® Products Program
	1.4.2 Device loaner program
	1.4.3 Device discount program

	1.5 Submitting documentation feedback

	2. Quick Start Guide
	2.1 Introduction
	2.2 ACCESS® requirements
	2.2.1 Join the ACCESS® Developer Program
	2.2.2 Download the ACCESS® Palm OS® SDK

	2.3 Development environment
	2.4 Palm® requirements
	2.4.1 Join the Palm® Developer Network (PDN)
	2.4.2 Download the Palm OS® Platform SDK

	3. Product Line Overview
	3.1 Centro™ smartphones
	3.1.1 What’s not supported by Centro™ smartphones

	3.2 Treo™ smartphone product line
	3.2.1 What’s not supported by Treo™ smartphones

	3.3 Tungsten™ handheld product line
	3.3.1 What’s not supported by Tungsten™ handhelds

	3.4 LifeDrive™ mobile manager
	3.4.1 What’s not supported by LifeDrive™ mobile managers

	3.5 Zire™ handheld product line
	3.5.1 What’s not supported by Zire™ handhelds

	3.6 Hardware feature matrix
	3.6.1 Palm® smartphone hardware features
	3.6.2 Palm® handheld and LifeDrive™ mobile manager hardware features
	3.6.3 Palm® Z22 organizer and Zire™ handhelds hardware features

	3.7 SDIO support
	3.8 Software compatibility specifications (Palm® libraries)
	3.8.1 Palm® smartphones
	3.8.2 Palm® handhelds, organizers, and mobile managers

	3.9 sysExternalConnectorAttachEvent and sysExternalConnectorDetachEvent notifications
	3.10 kPmConnectorClass Notifications

	4. PIM SDK
	4.1 The PIM SDK
	4.2 Known issue

	5. Multimedia
	5.1 Codec Plug-in Manager
	5.1.1 Codec Plug-in Manager overview
	5.1.2 Codec wrapping
	5.1.3 Codec Plug-in Manager process
	5.1.4 Media codec formats supported by device
	5.1.5 For more information

	5.2 Imaging
	5.2.1 Photo Library
	5.2.1.1 Coding examples
	5.2.1.2 For more information

	5.2.2 LCD Overlay
	5.2.2.1 External dialogs
	5.2.2.2 For more information

	5.2.3 Camera Manager
	5.2.3.1 Using the Camera Manager
	5.2.3.2 Resources required for camera functionality
	5.2.3.3 Using the Camera Slider on Zire™ 72 handhelds
	5.2.3.4 For more information

	5.2.4 JPEGLib, CameraLib, and ImageLib
	5.2.4.1 CameraLib
	5.2.4.2 ImageLib

	5.3 Audio
	5.3.1 Voice recording and sound libraries
	5.3.1.1 Palm® OS Sound Manager library
	5.3.1.2 Sound File Stream library (SndFileStream)
	5.3.1.3 Changes for Centro™ smartphones
	5.3.1.4 For more information

	5.3.2 Tones library
	5.3.2.1 Ring tone databases
	5.3.2.2 For more information

	5.4 Video playback
	5.5 Streaming
	5.5.1 Best practices for encoding video for streaming
	5.5.2 Known issue

	6. Data Communications
	6.1 NetPref Library API
	6.1.1 Loading the library
	6.1.2 NetPref Library information
	6.1.3 NetPref panel

	6.2 NetMaster library API
	6.2.1 Usage model
	6.2.2 Loading the library
	6.2.3 Library information

	6.3 Email client best practices
	6.4 HTTP library
	6.4.1 Architecture
	6.4.2 Functional highlights
	6.4.3 httpErrorLibraryAlreadyOpen error message for Treo™ 680 smartphones
	6.4.4 HTTP library interface to SSL
	6.4.5 HTTP library use of certificates/public key infrastructure
	6.4.6 HTTP library implementation
	6.4.7 General HTTP program information
	6.4.7.1 Initialization
	6.4.7.2 Finalization
	6.4.7.3 Processing Loop

	6.5 Net Services API
	6.5.1 Overview of the Net Services feature

	7. HTML Library
	7.1 Architecture
	7.2 Usage model
	7.3 Image rendering
	7.4 Debugging

	8. Telephony
	8.1 Overview of the Telephony API libraries
	8.1.1 CDMA and GSM libraries
	8.1.2 Using indicators
	8.1.2.1 GSM Connected indicator
	8.1.2.2 Carrier’s name indicator
	8.1.2.3 Voicemail indicator

	8.1.3 Using PhnLibRegister
	8.1.4 Getting the Cell ID on Centro™ smartphones
	8.1.4.1 Centro™ GSM smartphones
	8.1.4.2 Centro™ CDMA smartphones

	8.1.5 PhnLibGetMMSUAString()
	8.1.6 PhnMsgBoxDataType

	8.2 Phone Application
	8.2.1 Phone Application 2.5
	8.2.2 Phone Application 3.0 and later
	8.2.2.1 Overlapping gadgets
	8.2.2.2 Call in Progress gadget

	8.2.3 Launching the Phone application in a specific view
	8.2.3.1 Required headers
	8.2.3.2 Launching the Phone application in Call Log view

	8.2.4 Launching the Phone application in Dial Pad view
	8.2.4.1 Launching without a phone number
	8.2.4.2 Launching with the number field prefilled
	8.2.4.3 Launching and automatically dialing a phone number

	8.2.5 Launching the Phone application in the Favorites view

	8.3 Launching the Contacts application with the New Contact window open
	8.4 EvDO on Palm® smartphones
	8.4.1 Detecting EvDO vs. 1xRTT
	8.4.2 Troubleshooting incoming voice calls

	9. SMS
	9.1 What is the difference between SMS and NBS?
	9.2 SMS library
	9.3 What is SMS?
	9.4 Why use the SMS library?
	9.5 Understanding the SMS library
	9.5.1 Incoming SMS messages and message events
	9.5.2 Outgoing SMS messages
	9.5.3 Handling the GSM alphabet and Palm OS® alphabet
	9.5.4 Message segmentation
	9.5.4.1 Binary segmentation
	9.5.4.2 Textual segmentation

	9.5.5 Message database
	9.5.5.1 Header information
	9.5.5.2 Segmentation information
	9.5.5.3 Address information
	9.5.5.4 Message text

	9.6 Launching SMS from the New SMS screen

	10. System Extensions
	10.1 Transparency API
	10.2 File Browser API
	10.3 Smart Text Engine (STE) API
	10.3.1 STE architecture
	10.3.1.1 STE parsing engine
	10.3.1.2 STE rendering engine
	10.3.1.3 STE display engine

	10.4 REM Sleep API
	10.4.1 Normal sleep deferral
	10.4.2 REM sleep mode
	10.4.3 Detecting REM sleep mode
	10.4.4 LCD on/off notification
	10.4.5 Waking up from REM sleep mode

	10.5 Keyguard API
	10.6 Option and Shift key APIs
	10.7 MMS helper functions API
	10.7.1 MMS usage model
	10.7.2 MMS sample code

	10.8 NVFS
	10.8.1 Differences between NOR and NAND flash memory
	10.8.2 Database layout on NVFS devices
	10.8.2.1 Database layout

	10.8.3 Programming on devices that have NVFS
	10.8.3.1 Checking for NVFS
	10.8.3.2 Database issues
	10.8.3.3 Accessing the internal file or private volumes in NVFS
	10.8.3.4 Feature pointer issues
	10.8.3.5 NVFS on Palm OS® 5.4.9

	10.8.4 Optimizing your application for Palm® NVFS devices
	10.8.4.1 Speeding up actual performance
	10.8.4.2 Speeding up perceived performance

	10.9 5-Way Navigator and Keyboard API
	10.9.1 5-way navigator terminology
	10.9.2 Overview of 5-way navigator
	10.9.3 Navigation events
	10.9.3.1 Option and Shift modifiers

	10.9.4 Including objects as skipped objects
	10.9.5 Default navigation
	10.9.5.1 Initial focus mode
	10.9.5.2 UI objects included in the navigation order
	10.9.5.3 Tab order
	10.9.5.4 Vertical order
	10.9.5.5 Initial focus
	10.9.5.6 Cycling

	10.9.6 Custom navigation
	10.9.6.1 Hex navigation resource
	10.9.6.2 PilRC navigation resource
	10.9.6.3 Objects that become nonusable
	10.9.6.4 Handling navigation events

	10.9.7 Focus treatment
	10.9.8 Navigational API, Button Mapping, and behavioral differences between Palm smartphones and Tungsten™ T5 handhelds
	10.9.8.1 Palm OS® features
	10.9.8.2 Functions
	10.9.8.3 Button Mapping
	10.9.8.4 Associating custom behavior with the Center button
	10.9.8.5 Center button events for Treo™ 650 smartphones and later, and Tungsten™ T5 handhelds
	10.9.8.6 Page scrolling
	10.9.8.7 Navigation macros

	10.9.9 Tips and troubleshooting
	10.9.9.1 Navigation order
	10.9.9.2 Focus
	10.9.9.3 Focus rings and redraw problems
	10.9.9.4 Fields

	10.10 Handspring® extensions
	10.11 Tips and Tutorials
	10.11.1 Terminology
	10.11.1.1 Tips
	10.11.1.2 Tutorial
	10.11.1.3 Topic
	10.11.1.4 Lesson

	10.11.2 Content
	10.11.2.1 Topic titles
	10.11.2.2 Lesson text
	10.11.2.3 Lesson images

	10.11.3 Tips and Tutorial structure
	10.11.3.1 Menu document
	10.11.3.2 Lesson document
	10.11.3.3 XML document

	10.11.4 Converting Tips and Tutorial content in a PRC file
	10.11.4.1 What you need
	10.11.4.2 Converting content into an XRD resource file
	10.11.4.3 Converting a Palm XRD resource file into a PRC

	10.11.5 Displaying Tips and Tutorial content
	10.11.5.1 Displaying application tips
	10.11.5.2 Displaying a Tutorial

	10.11.6 Graphic element design guidelines
	10.11.6.1 Tutorial main menu
	10.11.6.2 Tutorial content pages
	10.11.6.3 Images that are in the shared content library in the device’s ROM

	10.12 Full-Screen Writing API
	10.13 Dynamic Input Area (DIA)

	11. Applications
	11.1 Web Browser API
	11.1.1 How the web browser works
	11.1.2 Web browser feature overview
	11.1.2.1 Protocol stack support
	11.1.2.2 Overview of key web browser features

	11.1.3 Download manager
	11.1.3.1 Content support in Blazer® 3.0 and Blazer® 4.0
	11.1.3.2 Content Support in Blazer® 4.5
	11.1.3.3 Download restrictions
	11.1.3.4 Streaming code example

	11.1.4 Launching the web browser on Palm™ smartphones
	11.1.5 Launching the web browser in minimal mode

	11.2 VersaMail® application API
	11.2.1 Before using the VersaMail® Device APIs
	11.2.2 Overview of the VersaMail® Device APIs
	11.2.2.1 VersaMail® Account Configuration
	11.2.2.2 Overview of the MMDevice database
	11.2.2.3 MMDevice database record keys

	11.2.3 Adding outgoing email to VersaMail® folders
	11.2.3.1 Overview of adding email to the Outbox

	11.2.4 VersaMail® Font library
	11.2.4.1 Checking whether the Font library is present
	11.2.4.2 Using the Font library

	11.2.5 VersaMail® Attachment Plug-ins API
	11.2.5.1 Overview of how the VersaMail® application handles plug-ins
	11.2.5.2 Overview of plug-in design

	12. Developing SDIO Applications for Palm® Handhelds
	12.1 SD, SDIO, and MultiMediaCard specifications
	12.2 Palm OS® SDK
	12.3 Software architecture of an SDIO application
	12.3.1 Expansion Manager
	12.3.2 VFS Manager
	12.3.3 SDIO slot driver
	12.3.4 Notification Manager

	12.4 Guidelines for SDIO applications
	12.4.1 Power management
	12.4.1.1 Turning on card functions
	12.4.1.2 Auto power off
	12.4.1.3 Callbacks

	12.4.2 Interrupt handling
	12.4.3 Detecting card insertion and removal
	12.4.4 Auto Run

	12.5 Developing the SDIO peripheral
	12.5.1 Specifications
	12.5.2 SDIO slot driver
	12.5.3 SDIO card initialization and identification on Palm OS
	12.5.3.1 Identification
	12.5.3.2 Initialization

	12.5.4 Code Storage Area (CSA)

	13. Debugging
	13.1 Overview
	13.1.1 Hardware requirements
	13.1.2 Simulator vs. on-device debugging
	13.1.3 Debugger modes
	13.1.3.1 Debug mode
	13.1.3.2 Console mode

	13.2 Simulators and emulators
	13.2.1 What's the difference?
	13.2.2 Where can I get them?
	13.2.3 Palm OS simulators and emulators
	13.2.4 Release Simulator
	13.2.4.1 Using the Release Simulator
	13.2.4.2 Keystroke equivalents
	13.2.4.3 Simulator debugging tips

	13.2.5 Debug Simulator

	13.3 DebugPrefs
	13.3.1 Checkbox settings
	13.3.2 Button options

	13.4 Metrowerks CodeWarrior
	13.4.1 Simulator debugging using CodeWarrior
	13.4.2 On-device debugging using CodeWarrior
	13.4.3 CodeWarrior debugging troubleshooting tips

	13.5 PalmDebugger
	13.5.1 Source level debugging
	13.5.2 Post-crash debugging
	13.5.3 Common PalmDebugger commands
	13.5.4 Using PalmDebugger to import and export files
	13.5.4.1 Import <cardNo> <filename>
	13.5.4.2 Export <cardNo> <filename>

	13.5.5 PalmDebugger tips

	13.6 Garnet OS Developer Suite
	13.7 Resets
	13.7.1 Soft Reset
	13.7.2 Warm Reset
	13.7.3 Hard Reset
	13.7.4 Factory Reset

	14. Style Guide
	14.1 Designing pages for the Blazer® web browser
	14.1.1 General rules for web page design
	14.1.2 Screen resolution
	14.1.3 Connection speed
	14.1.4 Content
	14.1.4.1 Page titles
	14.1.4.2 Content optimized for the Blazer® web browser
	14.1.4.3 Embedded audio playback
	14.1.4.4 Streaming embedded content in Blazer® 4.5
	14.1.4.5 Link protocol types
	14.1.4.6 File upload
	14.1.4.7 mailto command
	14.1.4.8 Multipass rendering
	14.1.4.9 Forms
	14.1.4.10 Tables
	14.1.4.11 Images
	14.1.4.12 Unsupported content

	14.1.5 Working with the Blazer® web browser
	14.1.5.1 Palm OS™ software integration tags
	14.1.5.2 Browser identification with user agent string
	14.1.5.3 Cookies
	14.1.5.4 Session handling
	14.1.5.5 Security
	14.1.5.6 Caching
	14.1.5.7 Downloads

	14.1.6 Testing your website
	14.1.6.1 Multiple devices
	14.1.6.2 Refreshing content

	14.1.7 International support
	14.1.7.1 HTML encoding
	14.1.7.2 WML encoding
	14.1.7.3 Accept headers

	14.1.8 List of acronyms
	14.1.9 Palm OS® integration tags

	14.2 Gadgets
	14.2.1 Required headers and libraries
	14.2.2 Overlapping gadgets in Treo™ 680
	14.2.3 How to include the Battery gadget
	14.2.4 How to include the Signal gadget
	14.2.5 How to include the Bluetooth® wireless technology gadget

	15. Multi-connector Specifications
	15.1 Overview
	15.2 Pinout of the Multi-connector
	15.2.0.1 Shielding
	15.2.1 USB
	15.2.2 Serial interface hardware
	15.2.3 Serial interface software
	15.2.4 HotSync® interrupt hardware
	15.2.5 HotSync® interrupt software
	15.2.6 Power output
	15.2.7 Audio detection
	15.2.8 Audio output

	15.3 Peripheral requirements
	15.3.1 Audio peripherals
	15.3.2 General serial peripherals

	15.4 Peripheral detection
	15.4.1 Class-level detection
	15.4.1.1 Peripheral attachment
	15.4.1.2 Peripheral removal

	15.4.2 Audio peripheral detection timing diagrams
	15.4.3 Serial peripheral detection timing diagram
	15.4.4 Peripheral detection timing specifications

	15.5 Interfacing with an audio peripheral
	15.6 Interfacing with a serial peripheral
	15.6.1 Electrical diagram of a serial peripheral
	15.6.2 Serial peripheral design guidelines

	15.7 Serial Peripheral Usage
	15.7.1 Serial support on the Multi-connector interface
	15.7.2 How to use the serial port
	15.7.3 Multi-connector peripheral attach and detach notifications
	15.7.3.1 Multi-connector serial peripheral notification
	15.7.3.2 Notification support on Treo™650
	15.7.3.3 Notification support on Tungsten™T5

	15.7.4 Known Issues
	15.7.5 Coding example
	15.7.6 Serial peripheral detection
	15.7.6.1 Serial peripheral detection on Treo™650
	15.7.6.2 Serial peripheral detection on Tungsten™ T5

	15.7.7 Connector library (PmConnectorLib)
	15.7.7.1 PmConnectorLib on Treo™650
	15.7.7.2 PmConnectorLib on Tungsten™ T5
	15.7.7.3 Power_Out API

	15.7.8 Serial HotSync
	15.7.8.1 On Treo™650
	15.7.8.2 On Tungsten™T5

	15.7.9 Known Issues
	15.7.9.1 Data transfer via the Network Preferences Panel
	15.7.9.2 Wake/Sleep loop on Palm® T|X

	15.8 Interfacing with Smart serial peripherals
	15.8.1 Smart serial peripheral handshaking process
	15.8.1.1 Initialization
	15.8.1.2 First Handshake
	15.8.1.3 Second Handshake
	15.8.1.4 Third Handshake
	15.8.1.5 Finalization
	15.8.1.6 Handshake rule exception
	15.8.1.7 Sample use case

	16. Headset Jack Specifications
	16.1 Overview
	16.1.1 Standard 2.5mm cell phone headset (3-pin)
	16.1.2 Stereo headphones (3-pin, 2.5mm or 3.5mm via adapter)
	16.1.3 (Custom) Combination headphone/headset (4-pin, 2.5mm)

	16.2 Stereo audio accessories
	16.3 Microphones
	16.4 Speaker Architecture
	16.5 Usage scenarios
	16.5.1 Treo™ 600 smartphones
	16.5.2 Treo™ 650 smartphones and later

	17. External Hardware Drawings
	17.1 Palm™ devices
	17.2 Expansion Parts Store
	17.3 Cable and connector drawings

	Sample Code
	Index

