
�������������

	
�
�
�
�����
�

�

��������	
�

This document may not, in whole or part, be copied, reproduced, reduced, or translated by any means, either mechanical or electronic,

without prior consent in writing from Aureal Inc. The information in this document has been carefully checked and is believed to be

accurate. However, Aureal Inc. assumes no responsibility for any inaccuracies that may be contained in this manual. In no event will

Aureal Inc. be liable for direct, indirect, special, incidental, or consequential damages resulting from any defect or omission in this

manual, even if advised of the possibility of such damages. Aureal reserves the right to make improvements in this manual and the

products it describes at any time, without notice or obligation.

���
�����

 © 1999, 2000 Aureal Inc. All rights reserved.

�
��	��
���

A3D, Aureal, Wavetracing, and the Aureal logo are trademarks of Aureal Inc.

The A3D logo and Vortex are registered trademarks of Aureal Inc.

All other trademarks belong to their respective owners and are used for identification purposes only.

Document Number: DO3010-030100

A3D Version 3.11

�

� � ��

���������

Contents ...i
Chapter 1: Introduction to A3D...1

What is A3D?..2
What is the Goal of A3D? ...2
Positional 3D Audio ..3
3D Room Acoustics...3
The A3D API and Engine ...4
Summary ...6

Chapter 2: A3D 3.0 Architecture Overview...7
A3D Data Path ..8
Multi-channel Capability and Native Data Formats ..9
The A3D Interface Hierarchy..11
The A3D API Geometry Engine ...17

Data ...18
States ...18
Wavetracing Algorithms ...19

Summary ...20
Chapter 3: Functional Summary..21

IA3d5 Interface Methods ..22
IA3dListener Interface Methods..24
IA3dReverb Interface Methods ...25
IA3dSource2 Interface Methods ...26
IA3dPropertySet Interface Methods..28
IA3dGeom2 Interface Methods...29
IA3dList Interface Methods ..31
IA3dMaterial Interface Methods ...32

Chapter4: A3D Direct Path Reference Pages ..33
IA3d5 Interface ...34
IA3dListener Interface ..90
IA3dReverb Interface..102
IA3dSource2 Interface ..118

Chapter 5: Property Set Reference Pages..181
IA3dPropertySet Interface...181

Sample Code ...183
Chapter 6: Geometry Engine Reference Pages..197

IA3dGeom2 Interface..198
IA3dList Interface ...245

Using a Render List in an Example ...245
IA3dMaterial Interface..255

Using Materials in an Example ...255
Index ...273

�

���

�

� � ��

��	
��������������������������

You are manning an anti-aircraft gun. You hear a jet approaching from your 6,
flying low. You have no time to swivel, so you raise your gun and start firing as
you hear the jet pass overhead. You hit it, and it explodes a moment later. You
are ready to congratulate yourself, but have to swivel quickly to intercept a
helicopter attacking from your 9.

You wouldn't question the role of sound in this scenario for a minute in the real world. Positional
sound is one of the main ways we orient ourselves in three dimensions. We know when airplanes
are overhead before we look at them. The sounds tell us where to look. We manage this trick
with only two ears.

You would emphatically question the scenario in a computer simulation or game running with
normal stereo sound, or even “expanded” sound. Stereo sound just doesn't contain the cues you
need to position sounds in space. On the other hand, programs written with A3D 3.0 accurately
model positional audio, so that the scenario actually works. You really can shoot down incoming
aircraft by ear. You can get this effect even with a pair of ordinary desktop speakers, and it gets
even better with headphones or more than 2 speakers.

In this document, we'll explain the architecture of A3D, discuss how it works, how the different
components fit together, and provide a reference manual page for every function. First, though,
some background.

�

��

�������������
A3D is a positional sound API and engine. It uses an engineering model of sound interacting
with your ears and the environment that is based on Head Related Transfer Functions (HRTFs).
Aureal and NASA helped pioneer the use of HRTFs. Psychoacoustics researchers all over the
world have validated HRTFs as the most accurate way to recreate real-world audio with speakers
or headphones.

Our brains can locate sounds in three dimensions (3D) because we have two separated ears with
different frequency responses in different directions. This is also known as binaural hearing.
Sounds located to the left reach the left ear before the right ear, and are louder in the left ear.
Sounds located in front of us are brighter and louder than sounds behind us because our ears
point slightly forward. Sounds located above us are distinguishable from sounds located below us
— each ear is highly asymmetric. We also track sounds and resolve ambiguities by moving our
head, and detect motion by hearing differences in loudness and frequency over time.

A3D 3.0 models the three-dimensional sound environment using HRTFs. In addition, it models
room and environmental acoustics in real time. A3D 3.0 also follows sound reflections as they
bounce around the environment. The noise of a fountain heard through a wall, and the noise of
the fountain bounced off a wall, are different from the noise of a fountain heard directly.

����������	��������������
The goal of the A3D 3.0 API is to make it as easy as possible for software developers to produce
compelling, realistic audio for your title. Using as many or as few of the features of this SDK as
you need, you can be sure that the A3D 3.0 engine provides you and your customers with the best
possible audio experience regardless of the sound card used. To that end, it enables the developer
to describe a world in an intuitive way and extracts relevant acoustic information from it. You
don't need a Ph.D. in acoustics and you don't need to know the mathematics of the HRTFs to
produce positional sound with A3D. We strived to make the concept of Wavetracing easy to
understand, especially for 3D graphics programmers. Sound sources in A3D typically correspond
to visual objects in 3D space; A3D takes care of calculating the effects of distance, echoes,
absorption, and relative motion to determine the correct binaural sound to present to the listener.

An additional goal of A3D is to provide a consistent cross-platform experience. If Aureal Vortex
audio hardware (or other A3D enabled hardware) is present at runtime, the A3D API will use it.
A2D emulation lets A3D work on any sound card, even if Vortex hardware is not present and

� �

� � ��

A2D is used to augment the number of 3D channels available on any sound card. In addition, the
A3D 3.0 engine automatically supports Microsoft's DirectSound3D (DS3D), Creative’s EAX,
and the IASIG’s I3DL2 if present, for 3D sound and reverb functionality.

��������������������
As we've already mentioned, we are able to locate sounds three dimensionally in the real world
through a combination of time lag (also known as phase) and frequency variation — in other
words, because our ears our separated in space and shaped asymmetrically. Once we locate what
we hear, our ears tell our eyes where to look to see what's happening. Synchronized sound and
visuals tell our brains that we are detecting real objects.

To produce the illusion of sonic virtual reality, A3D uses HRTF technology to re-create on the
computer what our two ears would hear in the real world. This creates the illusion that we are
detecting real objects. The illusion is heightened because the A3D technology is totally
interactive. As we move or turn and change the direction we are facing, the sound coming to our
ears changes appropriately, at the same time as the view on our screen changes.

There are obvious benefits to this approach: heightened realism, the feeling of immersion in the
virtual reality, suspension of disbelief, increased interactivity, faster reaction times, and knowing
where things are even if they are off screen. To accomplish all this, A3D needs you to define the
position and orientation of each sound source, which can vary with time. In addition, you must
define the position and orientation of one listener per frame, which again can vary with time.
Given this information, the A3D engine dynamically calculates how to render the positional 3D
audio scene and conveys it to the listener through the speakers or headphones.

��� ��������������
By itself, direct path positional 3D audio does a good job of fooling our ear into locating a sound.
However, the environment we are in greatly affects how sound is transmitted, and ultimately,
how it is perceived. Sound doesn't always travel directly from the source to the listener; however,
the environment affects how sound travels. Sound bounces off walls and ceilings, is absorbed by
rugs, is scattered by hard objects, and finds its way to some degree under doors, around corners,
and out windows. A drumbeat in an open field sounds much different from a drumbeat in a room
because of the wall and ceiling echoes and reverberation in the room. The spacing of the echoes
gives our ears cues about the size and shape of a room.

�

!�

A3D 3.0 technology is extremely powerful and is capable of modeling the effects that
environments have on sounds. To reproduce these effects, A3D uses Aureal Wavetracing™
technology. Wavetracing calculates how sound waves interact with the 3D environment: how
they bounce off walls, pass through walls, and come around corners. Wavetracing is the sonic
equivalent to ray tracing, which is used to produce photorealistic images.

Wavetracing provides even more realism, immersion and interactivity than simple direct path
positional 3D audio. In fact, it is a necessary step towards true audio realism. A realistic audio
environment creates a mood: a small, echoing space like a dungeon has a much different mood
from a large, echoing space like a cathedral or concert hall, and both are quite different from an
acoustically dead space.

With Wavetracing in place, sounds behind walls or around corners can tell you about objects that
cannot be seen. So, for instance, in a role-playing game, the player might be able to hear the
muffled sounds of monsters or characters moving on the other side of a closed door. That sort of
cue can make all the difference in the game experience.

To calculate the acoustical effects of the 3D environment, A3D's Wavetracing engine needs you
to define the position, shape and acoustic material type of the polygonal elements you want it to
model. These elements might be based loosely on the visual elements of your simulated space,
but shouldn't have as much detail. Wavetracing requires CPU cycles and since only relatively
large objects affect sound, you can keep computational overhead low by only sending large,
acoustically significant polygons to the Wavetracing engine.

��	�������"�����#����	�
A3D describes its world by default in terms of a right-handed Cartesian coordinate system, just
like OpenGL. In this coordinate system (see Figure 1), the positive x-axis points to the right, the
positive y-axis points up, and the positive z-axis points toward you.

� �

� � $�

FIGURE 1. Co-ordinate Systems

The system is right-handed in the sense that your right thumb would point in the direction of the
positive z-axis if you curled your fingers around the axis. Some 3D graphics systems, like
Direct3D, use a left-handed coordinate system (shown at the left in Figure 1).

All objects in the A3D world are positioned in the space of its coordinate system. Just as a 3D
graphics system only has one viewpoint at a time, the A3D audio system only has one listener at
a time, with a specific position, orientation, and velocity. There may be many sound sources,
each of which has a position, orientation, velocity, and volume cone as well as a wave data
stream.

The A3D rendering engine can use Aureal Vortex hardware for maximum rendering fidelity and
minimum impact on the system CPU. It can also run in software to complement limited hardware
resources, or emulate hardware on non-accelerated systems. The rendering engine automatically
scales across different platforms to produce the best sound each system can produce.

When the A3D engine is faced with a more complicated sound scenario than the rendering
resources of the current system can support, it practices resource management — the software
equivalent of triage. The A3D geometry engine computes the full audio scenario supplied by the
application for the currently supported feature set, then passes the resulting frame buffer to the
A3D resource manager. The resource manager ranks the sources in the buffer by loudness,

�

%�

distance from the listener and application-specified priority, and sends them to the audio
hardware (possibly via Aureal's A2D emulator or Microsoft's DirectSound3D), until it runs out of
resources.

The last stage of the A3D pipeline takes care of any necessary filtering to produce the correct
binaural sound for the current playback system — headphones, 2 speakers, 4 speakers, or
whatever the user is using at the moment. The application doesn't have to worry about adapting
to the speaker or sound card hardware at all. It only has to present its sources, listener,
environment, materials, and geometry to the engine for rendering. The rest — geometry
processing, psychoacoustics binaural rendering, hardware resource management, software
fallback, output device specific filtering — is all done automatically by the A3D engine.

&����
��
In this chapter, we have given you a very brief overview of A3D 3.0, positional 3D audio, and
room acoustics. In the next chapter, we will discuss the A3D 3.0 architecture in more depth.

� �

� � '�

��	
����������������������������

���������

As we mentioned in Chapter 1, A3D 3.0 is a positional sound API and engine. In this chapter,
we'll discuss how an application presents a model of an acoustic space to the A3D API, and how
the A3D engine turns that into positional audio.

A3D 3.0 is implemented as a COM1 server. The developer accesses the functionality of the A3D
3.0 server through one or more defined interfaces that are defined according to the COM model.
An application starts using the A3D engine by creating an instance of the A3dApi COM class
with CoCreateInstance and calling the returned IA3d5 interface's Init method. The application
then calls the IA3d5 interface's QueryInterface method to locate additional interfaces and calls
their methods as needed to define a listener, sound sources, materials, and the scene's geometry.
The A3D engine accumulates this data in a frame buffer. When the current scene is fully defined,
the application calls the A3dApi object's Flush method to perform the Wavetracing calculations
and send the audio scene from the process buffer to the resource manager and on to the audio
hardware. The process is very similar to the way an application defines visual geometry for a 3D
graphics engine like OpenGL or Direct3D.

1For more information about COM, we recommend Inside COM from Microsoft Press (ISBN 1-57231-349-8).

�

��������������
Figure 2 illustrates the overall A3D data path.

The application calls the A3D API library through its COM
interfaces to define the current audio scene. The API library passes
the information to the geometry engine, which accumulates its output
— a set of hardware and software controls for each source — in a
buffer. When the engine sees the Flush method call, it performs the
Wavetracing calculations and then sends the current audio frame to
the resource manager. Typically the application sends one audio
frame for each video frame.

The resource manager orders the sources in the buffer by their
probable importance, taking into account audibility (calculated from
distance and loudness), priority, and a weighting function specifying
which is more important. The resource manager then processes each
source in order. The resource manager either renders the audio
stream using A2D, which is a software emulator, or sends it to the
A3D system library that passes it on to the A3D sound card driver for
rendering in Vortex hardware, or utilizes native DS3D hardware on
non-Vortex hardware.

If the sound stream is rendered in hardware, a digital signal processor
(DSP) on the sound card applies filtering and mixes to create binaural
audio. Even if the sound stream is rendered via the A2D emulator,
there is still a possibility of a hardware assist with the filtering and
mixing if the sound card supports DirectSound3D. In any case, the
resource manager continues to send sources to the rendering pipeline
until it runs out of hardware voices. The exact number of hardware
voices available is sound-card dependent. Please refer to the A3D 3.0

Platform and Resource Manager Guide for an overview of what is available on various hardware
platforms.

��������	
��	��	

Application

A3D API

Geometry
Engine

Frame
Buffer

Resource
Manager

Hardware
Renderer

Sound Card
DirectSound

3D

A2D
(�

� �

� �)�

*����+�����	�����,����������-���.	������
/�
�����
A3D2 .0 is a great sound engine and API for 3D positional audio. It's also a great API and
engine for other formats such as plain old stereo. A3D 3.0 enables a game to utilize mono and
stereo content to be played back (rendered) in one of several ways:

♦ As true A3D sources.
Stereo files get mono mixed.

♦ As “mono” sources.
Where “mono” means that the 3D algorithm is turned off, but the data path (and the
hardware resources consumed) are the same as for a true A3D source.

♦ As “native.”
Where “native” means that it's played back according to the format defined in the wave
file and gets controls that correspond to that format. Thus, a mono file played natively
gets L/R pan controls, as does a stereo file.

A3D 3.0 allows the defined “render” mode to be switched in real-time on any sound source that
is under the care of the A3D 3.0 Resource Manager.

The table below shows which controls are available for which render modes.

�������	 Mono Stereo 3D
Gain X X X

Pitch X X X

Priority X X X

Pan Controls X X

EQ (global treble) X

Position X

Orientation X

Cone X

Distance X

Doppler X

Velocity X

Geometry X

�

�0�

The exact details for how you control this feature is in the API details. However, we can give
you a sneak preview of what you're going to see. IA3d5::NewSource, a function you've already
seen, plays an important role. It enables you to specify the initial render mode of the source.
You can then use IA3dSource2::Set/GetRenderMode to your heart's content. But be careful!
Switching modes while the source is playing is not strictly guaranteed to be click-free. Here are
the functions that you'll use to control this feature:

IA3d5::NewSource(DWORD dwInitMode, IA3dSource2 **pSource);

IA3dSource2::SetRenderMode(DWORD dwRenderModeMask);

IA3dSource2::GetRenderMode(DWORD *pdwRenderModeMask);

IA3dSource2::SetPanValues(DWORD nChannels, LPA3DVAL fGains);

IA3dSource2::GetPanValues(DWORD nChannels, LPA3DVAL fGains);

IA3dSource2:Set/GetPanValues can be called at any time, but only takes effect if the source is
in “native” mode. Only two-channel support is provided in this release. You must use the
resource manager to use these features. Here's exactly what you can do:

! Mono as mono, played as 3D
! Stereo as mono, played as 3D
! Mono as stereo, played as 2 channel pan
! Stereo as stereo, played as 2 channel pan

No support for:
! Stereo as mono, played as 2 channel pan
! Anything with more than 2 channels
! Switching the mode of non-resource managed sources

� �

� � ���

��	�����"��	
���	�1�	
�
����
Applications define acoustic geometry for A3D by using its COM interfaces. The top level or
root interface for the A3D API is IA3d5. See Table 1 for a list of interface methods.

��������	�
��	

�����������	�
��	
�

��������	�
��	

����	������	�
��	
�

�����

��������	
����

��������	

�������������	

�������
	�	�

��	����
	�	�

�������

�	��	
���

 �!	�
"����
�

������
	����

�	��	
���

 �!	�
"���
	�����

�����	��

�	��	
���#�$��	

���	�
%&����%�����$��	��
�������

&��
���	��'�	����	��
�������

FIGURE 3. A3D COM Object Hierarchy

�

���

The root IA3d5 interface can return pointers to its two peer interfaces IA3dListener and
IA3dGeom2 through its QueryInterface method. It can create an IA3dSource2 interface
using its NewSource or DuplicateSource methods.

�	������������������ 	���!�������

IA3d5 Standard COM
IUnknown

A3D

"��	
���	�

*	������

���"� �

"���	���

#���$����� 	���

�

�

�

�

�

�

�

�

�

�

�

�

���%��&��	���

'���"������

���	��

��&
	��

���	���(������

��
���	��)������

*�����

�����

�

)�����
��	����+�����

)���������	��)$���&�

)������	���!����)�	���

)����

���)�	���

)��%,�

�

)��-*������*	�����

)��!	.-	���	��)�������

)��!	."� ����������	$��&�

)��/�&*	���	�0)�������

)�����
��1	���

)�����
��!����

)��"�������!	�	2��!����

)��"!3������$'�	��

�

)��)���	&��23��
�������

)��4����3��!�����

����%.�

��*�	������	��	����

/��"������

/��)������

"�2������

�

"�2�����(�������

)��������

4����0*	���	�0�����������

�

1�����
��	����+�����

1���������	��)$���&�

1������	���!����)�	���

1����

���)�	���

1��%,�

1��-	���	���	
��

1��-*������*	�����

�

1��!	."� ����������	$��&�

1��/�&*	���	�0)�������

1�����
��1	���

1�����
��!����

1��"�������!	�	2��!����

1��"!3������$'�	��

1��)� ��	���	
��

1��)���	&��23��
�������

1��4����3��!�����

IA3dPropertySet defines the current property set. See Table 2 for a list of interface
methods.
�
�	�����������3��
���$)�������� 	���!�������

IA3dPropertySet Standard COM
IUnknown

Listener Property

"��	
���	�

*	������

���"� �

"���	���

#���$����� 	���

�

�������	�)�	��3	�	&������

#���$)�

����

)���

�

�

1���

� �

� � ���

IA3dListener defines the current listener. See Table 3 for a list of interface methods.
�
�	�����������+������������� 	���!�������

IA3dListener Standard COM
IUnknown

Listener Property

"��	
���	�

*	������

���"� �

"���	���

#���$����� 	���

�

)��������	�����

)��������	������2����

)��3��������

)��(������$�

1��������	�����

1��������	������2����

1��3��������

1��(������$�

IA3dReverb defines the reverb properties. See Table 4 for a list of interface methods.
�
�	����5������"����������� 	���!�������

IA3dListener Standard COM
IUnknown

Listener Property

"��	
���	�

*	������

���"� �

"���	���

#���$����� 	���

�

)�����3��
�������

)��3������	&
��2�

)��3��������	$��&��

)��3�����(���&��

)��"�����3������

1�����3��
�������

1��3������	&
��2�

1��3��������	$��&��

1��3�����(���&��

1��"�����3������

IA3dSource2 defines a source of sound. See Table 5 for a list of interface methods.

�	�����������)������������ 	���!�������

IA3dSource2 Standard COM
IUnknown

A3D

"��	
���	�

*	������

���"� �

"���	���

#���$����� 	���

�

�

�

�

�

�

�

�

�

�

�

�

�

�����	��������	�	�

���	�3�	$%������

*���������	�	�

+�	�6	���	�	�

+�	�*����

+��0�

�

�

)�������*��&	���

)�������

)������	���!����)�	���

)����

���)�	���

)��%,�

)��1	���

)��!��!	.����	����

�

3�	$�

"������

"������

)��
�

4����0�

�

�

1�����������$�

1�������*��&	��

1�������

1������	���!����)�	���

1����

���)�	���

1��%,�

1��1	���

1��!��!	.����	����

1�����������*	�����

�

�!�

IA3dSource2 Standard COM
IUnknown

A3D

�

�

�

�

�

�

�

�

�

�

�

�

�

�

)��������	�����

)��3	�(�����

)��3�����

)��3�	$3��������

)��3�	$��&��

)��3��������

)��3������$�

)��"� ����������	$)�	���

)��"� �������1	��)�	���

)��"�����!����

)��"�����!�.�

�

)����	�� ��&!����

�

)��(������$�

)��(���&�����'������

)��(���&������	&
��2�

1��������	�����

1��3	�(�����

1��3�����

1��3�	$3��������

1��3�	$��&��

1��3��������

1��3������$�

1��"� ����������	$)�	���

1��"� �������1	��)�	���

1��"�����!����

1��"�����!���

1��)�	����

1����	�� ��&!����

1���$
��

1��(������$�

1��(���&�����'������

1��(���&������	&
��2�

IA3dGeom2 is the interface for the A3D geometry engine, which deals with raw 3D
transformation matrices, materials, and quadrilateral elements. See Table 6 for a list of interface
methods.

�	����7������1��&������� 	���!�������

IA3dGeom2 Standard COM
IUnknown

Low-level A3D Geometry

����� 	���

!�������

���"� �

"���	���

#���$����� 	���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

'�2���

'���%������&����

'���+��������

'���!	����	��

'���)������

���	����

%�	����

%���

��%�	�����

+�	��������$�

+�	�!	���.�

!���!	���.�

/��%������&����

�

�

)�����������!����

)�����������!���8

4
�	��������	��

/��+����

/��!	����	��

/��&	��

3�
!	���.�

3���!	���.�

"��	���

)�	���

�	2�

��	���	���

(����.�

�

�

�

�

1��!	���.�

1�����������!����

1�����������!���8�

4
�	��������	��

� �

� � �$�

IA3dGeom2 Standard COM
IUnknown

Low-level A3D Geometry

�

�

�

�

�

�

)���
����2*	�����

)��3��$2��'��	�*	�����

)��"� ����������	$)�	���

)��"� �������1	��)�	���

)��"� �������!����

)��"� �������4
�	��8�

������	��

)��"�����!����

�

1��3��$2��'��	�*	�����

1��"� ����������	$)�	���

1��"� �������1	��)�	���

1��"� �������!����

1��"� �������4
�	��8

������	��

1��"�����!����

�

You may find some of the geometry methods familiar. The matrix, translation, rotation, vertex,
and normal methods correspond exactly to similarly named geometric transformation functions
in OpenGL. IA3dGeom2 can create materials (IA3dMaterial) and data lists (IA3dList)
with its NewMaterial and NewList methods. The various Bind methods set the state for
their objects to the current transformation matrix stack. The Begin and End methods of
IA3dGeom2 bracket the vertices and normals for the primitive specified in the Begin call. To
define geometry, you typically set up the transformation matrix stack, call Begin, define the
vertices and normals, and call End.

IA3dMaterial defines acoustic materials. See Table 7 for a list of methods.

�	����9������!	����	������� 	���!�������

IA3dMaterial Standard COM
IUnknown

A3D

"��	
���	�

*	������

���"� �

"���	���

#���$����� 	���

�

�

�

�

�

��
���	���

+�	��

)	���

�

�

)��/	&����

)��"� ����	����

)����	��&���	����

)�����3������

)���	��:��

4�����	��:��

�

1���������3������

1��/	&����

1��"� ����	����

1����	��&���	����

Load and Save read and write disk files. UnSerialize and Serialize read and write
packed memory images.

IA3dList is the interface for lists of geometry and state data. See Table 8 for a list of methods.

�

�%�

�	����;������+��������� 	���!�������
IA3dList Standard COM

IUnknown
A3D

"��	
���	�

*	������

���"� �

"���	���

#���$����� 	���

�

'�2���

�	���

%���

%�	���'������2(���

Lists are used define objects that might be added to the geometry more than once. Begin and
End bracket the list definition, and Call inserts the list into the geometry.

� �

� � �'�

��	�������"��	��	�
��#����	

A3D 2.0
methods

State
or

data?

Mode
Matrix

Material

Normal
Vertex
Source

Update state
variables

Transform data
Based on input

from state variables.

Data
accumulates

Frame Buffer

Accumulated
data flushed on

Compute
scene

Final description
of audio scene
sources for one

audio frame

Resource
ManagerIA3d4::Flush

FIGURE 4. A3D API COM Method Data Flow Diagram

Figure 4 illustrates what happens inside the A3D API engine when an application calls an A3D
API COM method. In Windows, the engine is implemented as a dynamic-link library, a3dapi.dll,
which must be installed in either the same directory as your application or the Windows system
directory. As shown in the diagram above, each call to an A3D 3.0 API method updates the
current audio scene in some way (just as it did under A3D 2.0). It might change a state, add a
source, position the listener, add polygons or, in the case of IA3d5::Flush, trigger the final scene
description to be computed and sent to the resource manager. The resource manager then passes
the audio frame to the audio hardware or to the rendering software, depending on the system
configuration.

�

�(�

������

In A3D, geometric information is data, defined by the vertices and normals of points, lines, and
quadrilaterals. Data defines the position, orientation and velocity of sources and listeners, and the
position and orientation of walls and openings.

&���	��

States, on the other hand, modify the way the geometric data behaves in the audio scene. There
are three kinds of states:

! Acoustic material
! Transformation matrix
! Rendering mode

���������!	����	��

Every acoustic material has reflectance and occlusion factors for both low and high frequencies.
A cork wall occludes almost all the high frequency sound and most of the low frequency sound
that reaches it, reflecting very little of either. A metal wall exhibits much higher reflectance and
lower occlusion. The materials properties are states that are explicitly bound to geometric data
with a method call.

��	�� ��&	�����!	���.�

The transformation matrix is another kind of state. Throughout the process of defining a scene,
the application applies translations and rotations to the frame of reference. When geometric
vertex data is defined, the current transformation matrix in effect is applied to the data before it
is added to the frame buffer. When a source is bound to the scene (with
IA3dGeom2::BindSource), the current transformation matrix in effect is applied to the
source's position data.

"�������2�!����

Rendering modes constitute a third kind of state. For instance, the application can globally
enable or disable first order reflection calculations on hardware that supports this feature. With
reflections enabled, the user might get echoes; without reflections, there might be more resources
available for other acoustic Wavetracing calculations.

� �

� � �)�

��.	�
����������
������

When the A3D engine renders a scene, it applies the available (depending on the platform)
enabled rendering modes. The rendering modes are, in order of increasing complexity: direct
path, occlusion, and first order reflections.

�������3	���

The engine determines the path of the sound emitted from each source along a straight line
through the environmental media to the listener. This rendering mode is always enabled and
available on all platforms.

The sound (audio file input) coming from the source is modified the by the following:
! Source's cone parameters and orientation
! Sound's gain and equalization
! Source's velocity relative to the listener and Doppler shift factor

The sound is attenuated based on the following:
! Distance between source and listener
! Distance model scale factor and cutoff distances of the source
! Attenuation rate and high-frequency absorption rate of the environment

����������

The engine determines the path of the sound emitted from each source and follows it along a
straight line through the environmental media and any intervening polygons or walls to the
listener. Occlusion comes into play when the source and listener are on the opposite sides of a
wall. This rendering mode can be disabled. It is available on all platforms.

The sound is attenuated based on the following:
! Distance between source and listener
! Source and environment factors
! Low- and high-frequency occlusion factors of the intervening materials

*�����������"� ���������

The engine does all the same calculations as it would for occlusion, but in addition it takes into
account reflections from any intervening polygons or walls, based on the low- and high-
frequency reflection factors of the intervening materials. Reflection comes into play when the
source and listener are on the same side of a wall and is added to the sound from the direct path
calculation. First order reflections can be disabled. It is not available on all platforms.

�

�0�

3��$2�����&
��.��$�

As we've seen, acoustic Wavetracing must follow the sound from each source to the listener,
taking into account the possible occlusion or reflection of each polygon in the audio scene. The
different rendering modes have varying costs, but the overall CPU usage of the Wavetracing
calculation is still directly proportional to the product of the number of sources in the scene and
the number of polygons.

(Wavetracing CPU usage) ∝ (Number of Source × Number of Polygons)

If an application tries to use highly detailed video geometry to define the audio scene, computer
performance may be hampered, as the A3D engine attempts to render tens of thousands of
quadrilaterals. Fortunately, an audio scene doesn't need such detail.

Visible light has wavelengths measured in microns, but that isn't the limit to object visibility. Our
eyes can resolve objects smaller than a millimeter close up, and objects of a few centimeters
across a room. Audible sound, on the other hand, has wavelengths measured in centimeters (for
high frequencies) to meters (for low frequencies). We can resolve the echoes and occlusions
from objects roughly the size of our ears if they are close to our ears, and from objects several
meters in size if they are across a room.

This means that audio scenes can be described with dramatically fewer polygons than video
scenes. Doing so at the level of raw geometry requires you to simplify or reduce the number of
polygons in a video scene.

To summarize, represent a given audio scene with a very rough polygonal representation. Extra
detail doesn't necessarily improve the user's experience.

&����
��
A3D is a positional sound API and engine. An application calls the A3D engine through the
engine's interfaces. Each scene has one listener position and as many audio sources and polygons
as needed. Far fewer audio polygons are needed to define a scene than video polygons. The
number of audio polygons should be kept low to conserve CPU time. The A3D engine performs
Wavetracing calculations on completed audio scenes and passes the results to a resource
manager, which sends the most important source information to the audio hardware.

� �

� � ���

��	
������*�������	��)�&&	�$�

This chapter gives a brief listing and description of each method under a particular interface. The
methods are further described in Chapter 4: “A3D Direct Path Reference Pages”, Chapter 5:
“Property Set Reference Pages”, and Chapter 6: “Geometry Engine Reference Pages”. The
interfaces are presented in the following order:

! IA3d5
! IA3dPropertySet
! IA3dListener
! IA3dSource2
! IA3dPropertySet
! IA3dGeom2
! IA3dList
! IA3dMaterial

�

���

"���$�"��	
���	�*	������
IA3d5
Method Name Description
A3dEnumerate Enumerates all audio output devices.

AddRef Increments the IA3d5 reference count.

BindReverb Binds an A3D reverb preset to the world.

Clear Clears all data for an audio frame.

Compat Sets a compatibility mode.

DisableViewer Disables the A3D shared memory interface.

DuplicateSource Duplicates an audio source.

Flush Flushes all data for an audio frame.

GetHardwareCaps Query the hardware for 3D and stereo support.

GetSoftwareCaps Query the software (A2D) engine for 3D and stereo support.

Init Initializes the A3D root object.

InitEx Initializes the A3D root object

IsFeatureAvailable Checks if a requested feature is available in the hardware.

NewReverb Creates a new reverb object.

NewSource Creates a new source with no data.

QueryInterface Returns an interface pointer for a supported interface.

RegisterApp Unsupported.

RegisterVersion Tells the library what version the application was built with.

Release Decrements the IA3d5 reference count.

Set/GetCooperativeLevel Sets and gets the audio device cooperative level.

Set/GetCoordinateSystem Sets and gets the coordinate system for geometry data.

Set/GetDistanceModelScale Globally scales the distance model attenuation curve.

Set/GetDopplerScale Globally scales the effect of Doppler.

Set/GetEq Sets and gets the global equalization for all sources.

Set/GetHFAbsorbFactor Unsupported.

Set/GetMaxReflectionDelayTime Sets and gets the maximum delay possible for reflections.

Set/GetNumFallbackSources Sets and gets the number of fallback software channels.

Set/GetOutputGain Sets and gets the global output gain for all A3D sources.

Set/GetOutputMode Sets and gets the speaker output mode.

�

� � ���

IA3d5
Set/GetResourceManagerMode Unsupported.

Set/GetRMPriorityBias Sets the weight of priority to audibility for all resource-managed
sources.

Set/GetStreamingProperties Modifies control values used by the streaming engine.

Set/GetUnitsPerMeter Specifies the number of application units in a meter.

SetMaxHardwareResources Sets the maximum number of hardware sources that can be allocated by
the resource manager.

Shutdown Releases all A3D interfaces and any resources associated with them.

UnlockFallbackAC3Decoder Checks for valid key to enable Dolby Digital AC-3 fallback decoder.

�

�!�

"���2���	�	
�"��	
���	�*	������
IA3dListener Interface
Method Name Description
AddRef Increments the IA3dListener reference count.

QueryInterface Returns an interface pointer for a supported interface.

Release Decrements the IA3dListener reference count.

Set/GetOrientation Sets and gets the orientation of the listener.

Set/GetOrientationAngle Sets and gets the orientation of the listener.

Set/GetPosition Sets and gets the position of the listener.

Set/GetVelocity Sets and gets the velocity of the listener.

�

� � �$�

"��� 	.	
,�"��	
���	�*	������
IA3dReverb Interface
Method Name Description
AddRef Increments the IA3dReverb reference count.

QueryInterface Returns an interface pointer for a supported interface.

Release Decrements the IA3dReverb reference count.

Set/GetAllProperties Sets or gets all properties of a custom reverb, or modifies all preset
properties at once.

Set/GetPresetDamping Sets or gets the damping factor for this reverb object’s active preset.

Set/GetPresetDecayTime Sets or gets the decay time for this reverb object’s active preset.

Set/GetPresetVolume Sets or gets the volume for this reverb object’s active preset.

Set/GetReverbPreset Selects a reverb preset for this reverb object, or returns the current
preset.

�

�%�

"���&��
�	��"��	
���	�*	������
IA3dSource2 Interface
Method Name Description
AddRef Increments the IA3dSource2 reference count.

AllocateAudioData Allocates memory for audio data.

ClearPlayEvents Clears all audio events for a source.

FreeAudioData Releases allocated data for a sound source.

GetAudibility Gets the calculated audibility of the source.

GetOcclusionFactor Gets the occlusion factor of the source.

GetStatus Gets the activity status of a source.

GetType Gets the type of the source.

GetAudioSize Gets the size of the audio file in bytes.

LoadWaveData Loads audio data from memory into the source.

LoadWaveFile Loads data into the sound source from file.

Lock Allows data to be written to a buffer.

Play Starts a sound source playing.

QueryInterface Returns an interface pointer for a supported interface.

Release Decrements the IA3dSource2 reference count.

Rewind Rewinds a sound source back to the beginning of the wave data.

Set/GetAudioFormat Sets and gets the format of the audio information.

Set/GetCone Sets the directionality of a source cone.

Set/GetDistanceModelScale Changes the distance attenuation curve for a source.

Set/GetDopplerScale Sets and gets the exaggerated Doppler effect on a source.

Set/GetEq Sets the tonal equalization of a source.

Set/GetGain Sets and gets the playback gain of the source.

Set/GetMinMaxDistance Sets and gets the range over which the distance model will be applied to
a source.

Set/GetOrientation Sets and gets the direction of the sound source.

Set/GetOrientationAngles Sets and gets the orientation of the sound source.

Set/GetPanValues Sets the gains for multi-channel, non-spatialized sources.

Set/GetPitch Set and gets the pitch bend of the source.

Set/GetPlayPosition Sets the playback cursor in a sound source to a particular time.

Set/GetPlayTime Sets and gets the playback cursor in the audio data.

� �

� � �'�

IA3dSource2 Interface
Set/GetPosition Sets and gets the location of a sound source.

Set/GetPriority Sets and gets the priority of a source.

Set/GetReflectionDelayScale Scales the reflection delays for a source.

Set/GetReflectionGainScale Scales the reflection gains for a source.

Set/GetRenderMode Set and gets the render mode of a source.

Set/GetReverbMix Sets or gets the mix level in the current reverb for this source.

Set/GetTransformMode Sets and gets the transform mode for a source.

Set/GetVelocity Sets and gets the velocity of a source.

Set/GetVolumetricBounds Sets or gets the mix level in the current reverb for this source.

Set/GetVolumetricDamping Sets and gets the damping factors used to rendering the
volumetric source.

SetPlayEvent Sets an event to be triggered at a certain point in the audio data.

Stop Stops a playing sound source.

Unlock Unlocks a previously locked sound source.

�

�(�

"����
�	
��&	��"��	
���	�*	������
IA3dListener Interface
Method Name Description
AddInitialStateParameters Sets the initial “zero” state of a property set.

AddRef Increments the IA3dPropertySet reference count.

Get Retrieves data for an item in a property set.

QueryInterface Returns an interface pointer for a supported interface.

QuerySupport Determines whether a property in a property set is supported on the port
or device.

Release Decrements the IA3dPropertySet reference count.

Set Sets data for an item in a property set.

� �

� � �)�

"����	����"��	
���	�*	������
IA3dGeom2 Interface
Method Name Description
AddRef Increments the IA3dGeom2 reference count.

Begin Begins to insert vertex and normal data for a geometric primitive.

End Finishes vertex data block.

BindEnvironment Unsupported.

BindListener Inserts the listener into the scene hierarchy.

BindMaterial Sets the current material.

BindSource Inserts a source into the scene hierarchy.

Disable Globally disables a feature in the Wavetracing engine.

Enable Globally enables a feature in the Wavetracing engine.

GetMatrix Gets the current matrix on the stack.

IsEnabled Returns whether or not a feature is enabled in the Wavetracing engine.

LoadIdentity Loads an identity matrix onto the matrix stack.

LoadMatrix Loads an arbitrary matrix onto the matrix stack.

MultMatrix Multiplies the current matrix by an arbitrary matrix.

NewEnvironment Unsupported.

NewList Creates a new list of geometry data.

NewMaterial Creates a new material.

Normal Specifies a normal for a polygon.

PopMatrix Pops a matrix off the matrix stack.

PushMatrix Pushes a matrix onto the matrix stack.

QueryInterface Returns an interface pointer for a supported interface.

Release Decrements the IA3dGeom2 reference count.

Rotate Applies a rotational transformation to the current matrix.

Scale Applies a scale transformation to the current matrix.

Set/GetOcclusionMode Unsupported.

Sets/GetOcclusionUpdateInterval Sets the number of frames between occlusion processing.

SetOpeningFactor Sets the opening factor for subfaces.

Set/GetPolygonBloatFactor Sets the reflection bloat factor for polygons.

Set/GetReflectionDelayScale Sets the delay scaling factor for reflections.

�

�0�

IA3dGeom2 Interface
Set/GetReflectionGainScale Sets the gain scaling factor for reflections.

Set/GetReflectionMode Unsupported.

Set/GetReflectionUpdateInterval Sets the number of frames between reflection processing.

Set/GetRenderMode Sets the current render mode for polygon processing.

Tag Tags the next polygon.

Translate Applies a translation to the current matrix.

Vertex Send vertex data for a primitive to the rendering engine.

� �

� � ���

"���2����"��	
���	�*	������
IA3dList Interface
Method Name Description
AddRef Increments the IA3dList reference count.

Begin Begins adding data to a list.

End Closes the begin block.

Call Executes the sequence of commands stored in a list object.

EnableBoundingVol Enables bounding box culling for a list.

QueryInterface Returns an interface pointer for a supported interface.

Release Decrements the IA3dList reference count.

�

���

"���*��	
����"��	
���	�*	������
IA3dMaterial Interface
Method Name Description
AddRef Increments the IA3dMaterial reference count.

Duplicate Unsupported.

GetClosestPreset Unsupported.

Load Unsupported.

QueryInterface Returns an interface pointer for a supported interface.

Release Decrements the IA3dMaterial reference count.

Save Unsupported.

SelectPreset Unsupported.

Serialize Unsupported.

Set/GetNameID Sets and gets the name ID of the material.

Set/GetReflectance Sets the reflectance of a material.

Set/GetTransmittance Sets the transmittance of a material.

UnSerialize Unsupported.

� �

� � ���

��	
����5������������3	���

"� �������3	2���

The basic technology in A3D 3.0 is called direct path rendering which is the term used to
represent sound propagating on a direct path from the source of the sound to the listener's ears. It
does not include secondary effects such as reflections — sound bouncing off of walls — or
occlusions — sound being transmitted through walls. This chapter contains all the material
pertinent to programming direct path rendering into your application. Full positional 3D audio is
possible when programming at this level.

Direct path rendering is accessed through three interfaces:
! IA3d5
! IA3dListener
! IA3dSource2

IA3d5 is the top-level root interface to A3D. All other interfaces are obtained through it in either
of the following ways:

! Querying for a pointer to an interface that IA3d5 creates automatically.
! Using an IA3d5 method to create an object then getting an instance of an interface for it

returned.

Each of the following three sections gives a short introduction to each interface, followed by
reference pages for the methods contained within it.

�

�!�

"���$�"��	
���	�
The root interface to A3D is IA3d5. This is the top-level interface and the one from which the
other interfaces are either queried or created. A3D itself is started by getting a handle to this
interface. The following code shows how to initialize A3D:

/* initialize COM */

CoInitialize(NULL);

/* load the a3dapi.dll and get a handle to IA3d5 */

hr = CoCreateInstance(CLSID_A3dApi, NULL, CLSCTX_INPROC_SERVER,
IID_IA3d5, (void **)&pA3d5);

/* if this failed then the dll wasn't on the system */

if (FAILED(hr))

return(hr);

At this point, the DLL is loaded and the IA3d5 interface is available to the application. Next,
initialize A3D with the features the application is going to use. Features are requested during
initialization because some require hardware to be reserved. The initial state of requested
features is off. The application can switch them on or off as necessary.

Typically, an A3D 3.0 application uses the following initialization settings:
hr = pA3d5->InitEx(NULL, A3D_OCCLUSIONS | A3D_1ST_REFLECTIONS,
A3DRENDERPREFS_DEFAULT);

Assuming the call succeeds, A3D is initialized and ready to accept instructions.

After basic initialization, the application can access the other methods contained within IA3d5.

�

� � �$�

To shut down, the application should release each interface and finally IA3d5 itself:
/* release IA3d5 */

pA3d5->Release();

/* shut COM down */

CoUninitialize();

�

�%�

"���$33���#���	
��	
Enumerates all audio output devices.

�
�����	�

HRESULT A3dEnumerate(
LPA3DENUMCALLBACK lpA3dEnumCallback,
LPVOID lpContext

);

��
��	�	
��
lpA3dEnumCallback callback function

lpContext context data value

 	��
��4���	�
S_OK
E_POINTER
E_FAIL

�	��
������

This function is used to determine which audio device on the system A3D 3.0 will render
through. After the device has been identified by using A3dEnumerate, the id is passed
into IA3d5::Init. From here on A3D will render through that device.
For each detected audio output device on the system, a single call is made to the
A3DENUMCALLBACK function with relevant data. The result of this is that the
calling routine will end up with an id specifying the audio device it wants to render with.
The lpContext value is set by the calling application and passed in to each call to
lpA3dEnumCallback unchanged.

&		������

IA3d5::InitEx
A3DENUMCALLBACK

�

� � �'�

"���$33��� 	��
Increments the IA3d5 reference count.

�
�����	�

ULONG AddRef(
void

);

��
��	�	
��
None.

 	��
��4���	��

Returns the new reference count.

�	��
������

When going through a COM method such as QueryInterface or NewSource to get an
interface pointer to a component, the reference count of the component is automatically
incremented. The reference count is used to let the component know when nothing is
accessing it anymore and that it can delete itself from memory.
Whenever an interface pointer is assigned to another interface pointer, the AddRef
method should be called to let the component know that two pointers are using the same
interface. Now when the Release method is called, the component won't delete itself
since it has been told something else is still using it. Consider the following example:

hr = pRoot->QueryInterface(IID_IBox, (void **)&pBox1);
if (SUCCEEDED(hr))
{

pBox1->DrawIt();
pBox2 = pBox1;
pBox2->AddRef();
pBox1->Release();

}

While pBox1 is now invalid because it has been released, pBox2 remains intact and can
still be used.
All A3D 3.0 interfaces inherit the COM IUnknown interface, which contains the
methods AddRef, QueryInterface, and Release. Inside COM by Microsoft Press is an
excellent resource for detailed information on COM.

�

�(�

&		������

IA3d5::QueryInterface
IA3d5::Release

�

� � �)�

"���$335��� 	.	
,�
Binds an A3DReverb to the world.

�
�����	�

HRESULT BindReverb(
LPA3DREVERB pReverb

);

��
��	�	
��
pReverb A pointer to the A3DReverb object to be bound.

 	��
��4���	��
S_OK
E_INVALIDARG

�	��
������

Enables a reverb by binding an A3DReverb object to the world. In the current
implementation, enabling a reverb will disable any reverb that is currently enabled. This
may change in the future as multiple reverbs may be allowed.
If NULL is passed in, all reverberation effects are disabled.
Note: All functions that set reverb properties can be used on any reverb object whether
or not the reverb object is currently bound.
Note: Switching between reverbs will occur smoothly, at the next call to IA3d5::Flush..

&		������
IA3d5::NewReverb

IA3dReverb

�

!0�

"���$33��	�
�
Clears all data for an audio frame.

�
�����	�

HRESULT Clear(
void

);

��
��	�	
��

None.

 	��
��4���	��

S_OK

�	��
������

Use IA3d5::Clear to remove the audio and geometry information for the next frame.
A frame of audio is similar to a frame of graphics; while the previous frame is playing,
new data describing the next frame to be rendered is accumulated in a second frame
buffer. The data in this second frame buffer is not applied to any sound sources until the
entire scene has been described. When the scene is complete, the application signals that
the data in the second frame buffer should be used instead of the original data. In
graphics, this is known as double buffering and the concept for audio is the same. An
audio frame in this sense is a collection of parameters describing how the scene should
be rendered. The ‘data’ being referred to here is not the audio wave sample data, but
rather the parameters describing how the wave data should be filtered.
An application delimits its audio frame with calls to IA3d5::Clear and IA3d5::Flush,
and makes calls to other A3D 3.0 methods between them. It's necessary to call
IA3d5::Clear at the beginning of the frame to remove the data that accumulated during
the previous frame. IA3d5::Clear removes only data — all of the states are left intact.
States include the current matrix, the matrices the listener or any sources are bound to,
the current material, and any rendering modes. Keeping this information in mind, do not
use IA3d5::Clear as a “reset” button.

&		������

IA3d5::Flush

�

� � !��

"���$33������
Sets a compatibility mode.

�
�����	�

HRESULT Compat(
DWORD dwMode,
DWORD dwValue

);

��
��	�	
��
dwMode Identifies a compatibility mode to set.

dwValue Value to be sent.

 	��
��4���	��

S_OK

�	��
������

IA3d5::Compat allows an application to access undocumented features within A3D 3.0.
Currently, there are no undocumented features so this method should not be called.

&		������

None.

�

!��

"���$33����,�	4�	6	
�
Disables the A3D shared memory interface.

�
�����	�

HRESULT DisableViewer(
void

);

��
��	�	
��

None.

 	��
��4���	��

S_OK

�	��
������

Debug Viewer versions of the A3D 3.0 library support a shared memory interface, which
among other things, is used to send information to the A3D GL Debug Viewer
application. This viewer shows a wireframe view of the audio database, with the listener,
sources and polygons displayed. Since the viewer displays wireframe it is possible to see
through walls which means it could be used to cheat in multiplayer games if a user
managed to get debug A3D binaries and a copy of the viewer. IA3d5::DisableViewer
prevents this by disabling the shared memory interface.
If used at all, this method should only be incorporated in a game at the last moment
before the game is shipped, as the debug viewer is an invaluable tool during
development.
Once disabled, the shared memory can't be re-enabled until A3D has been shut down and
re-initialized.
See the Chapter 3: “Debug Viewer GL” on page 13 of the A3D 3.0 Users' Guide for
more information.

&		������

None.

�

� � !��

"���$33�������	&��
�	�
Duplicates an audio source.

�
�����	�

HRESULT DuplicateSource(
LPA3DSOURCE22 pOriginal,
LPA3DSOURCE22 *ppCopy

);

��
��	�	
��
pOriginal Pointer to the source to be copied.

ppCopy Address of a pointer to a new IA3dSource2. The function fills out the
pointer value.

 	��
��4���	��

S_OK
E_INVALIDARG
A3DERROR_NOT_VALID_SOURCE
A3DERROR_NO_WAVE_DATA
A3DERROR_FAILED_DUPLICATION

�	��
������

IA3d5::DuplicateSource creates a copy of an existing source. This is similar to
IA3d5::NewSource in that it returns a pointer to an instance of an IA3dSource2
interface that represents a new sound source object. The duplicate is always of the same
type as the original, and the wave data of the original and duplicate is shared, but all
other properties can be modified independently.
After a source has been duplicated, it can be released without affecting the duplicate.

&		������

IA3d5::NewSource

�

!!�

"���$33/�����
Flushes all data to the rendering engine at the end of a frame.

�
�����	�

HRESULT Flush(
void

);

��
��	�	
��

None.

 	��
��4���	��

S_OK

�	��
������

This method signals the end of an audio frame. It reads all data received since the last
IA3d5::Clear call which describes the scene to be rendered, computes the parameters
required to render that scene, and sends the parameters to the A3D resource manager.
Everything that the application does before calling IA3d5::Flush is accumulated in a
frame buffer but the effect of it only becomes audible when this method is called. For
example, when a source is told to play, it doesn't play immediately but starts playing
when IA3d5::Flush is next called. Deferring results of the instructions issued during a
frame to the end of that frame allows synchronization of all sounds and reduces
computation.
Note that an audio frame in this sense is only a collection of parameters describing how
the scene should be rendered. The ‘data’ being referred to here is not the audio wave
sample data, but rather the parameters describing how the wave data should be filtered.
Without calling IA3d5::Flush, the audio wave data will continue to be fed to the sound
card at the correct rate without any stalls or interruptions. This method is purely for
updating the parameters that define the filters applied to the sources being played.

�

� � !$�

Depending on the A3D implementation, IA3d5::Flush may not return immediately as
parts of the computation carried out by the geometry renderer may be in the same thread
as the calling function.

&		������

IA3d5::Clear

�

!%�

"���$33�	�1�
�6�
	����
Query the hardware for 3D and stereo support.

�
�����	��

HRESULT GetHardwareCaps(
A3DCAPS_HARDWARE *pCaps

);

��
��	�	
���
pCaps The address of an A3DCAPS_HARDWARE structure created by the

application.

 	��
��4���	���

S_OK
E_POINTER
A3DERROR_FUNCTION_NOT_VALID_BEFORE_INIT

�	��
�������

This method is used to find out some basic information about the hardware in the system.
The return value fills out an A3DCAPS_HARDWARE structure that contains the
following fields:
typedef struct __A3DCAPS_HARDWARE

{
DWORD dwSize;
DWORD dwFlags;
DWORD dwReserved;
DWORD dwReserved2;
DWORD dwOutputChannels;
DWORD dwMinSampleRate;
DWORD dwMaxSampleRate;
DWORD dwMax2DBuffers;
DWORD dwMax3DBuffers;

} A3DCAPS_HARDWARE;

dwFlags specifies the type of hardware and is either A3D_DIRECT_PATH_A3D or
A3D_DIRECT_PATH_GENERIC where the latter means it's not an A3D card.
dwOutputChannels is always 2.

�

� � !'�

dwMinSampleRate and dwMaxSampleRate are the minimum and maximum sample rates
that are supported, and for most Vortex-based devices will be 0 and 96,000 respectively.
This doesn't mean that a 96 kHz wave file can be loaded, but rather that a 48 kHz wave
file can be played back with a pitch shift factor of 2.
dwMax2DBuffers and dwMax3DBuffers report the number of stereo and 3D buffers the
hardware can support. These numbers assume that either creating a 3D source doesn't
take resources away from stereo sources, or that there are no stereo sources, and vice
versa. For example, a card might report it can do 23 stereo sources and 8 3D sources, but
in reality if you create 8 3D sources it will not allow even a single stereo source. The
other caveat is that the wave files are of an optimal format, usually 22 kHz 8 bit mono.
The numbers reported in this structure are best case and assume nothing else is
attempting to use the hardware.

&		�������

IA3d5::GetSoftwareCaps.

�

!(�

"���$33�	�&���6�
	����
Query the software (A2D) engine for 3D and stereo support.

�
�����	��

HRESULT GetSoftwareCaps(
A3DCAPS_SOFTWARE *pCaps

);

��
��	�	
���
pCaps The address of an A3DCAPS_SOFTWARE structure created by the

application.

 	��
��4���	���

S_OK
E_POINTER
A3DERROR_FUNCTION_NOT_VALID_BEFORE_INIT

�	��
�������

This method is used to find out some basic information about the A2D engine. The
return value fills out an A3DCAPS_SOFTWARE structure that contains the following
fields:
typedef struct __A3DCAPS_SOFTWARE

{
DWORD dwSize;
DWORD dwVersion;
DWORD dwFlags;
DWORD dwReserved;
DWORD dwReserved2;
DWORD dwOutputChannels;
DWORD dwMinSampleRate;
DWORD dwMaxSampleRate;
DWORD dwMax2DBuffers;
DWORD dwMax3DBuffers;

} A3DCAPS_HARDWARE;

Currently only dwMinSampleRate, dwMaxSampleRate, dwMax2DBuffers, and
dwMax3DBuffers contain useful information.
dwMinSampleRate and dwMaxSampleRate are the minimum and maximum sample rates
that are supported, and will be around 0 and 96,000 respectively. This doesn't mean that

�

� � !)�

a 96 kHz wave file can be loaded, but rather that a 48 kHz wave file can be played back
with a pitch shift factor of 2.
dwMax2DBuffers and dwMax3DBuffers report the number of stereo and 3D buffers the
engine can support. These numbers assume that either creating a 3D source doesn't take
resources away from stereo sources, or that there are no stereo sources, and vice versa.

&		�������

IA3d5::GetHardwareCaps.

�

$0�

"���$33"����
Initializes the A3D 3.0 audio library.

�
�����	�

HRESULT Init(
LPGUID lpGuid,
DWORD dwFeatures,
DWORD dwRenderPrefs

);

��
��	�	
��
lpGuid Pointer to the GUID from the DeviceEnumeration function.

dwFeatures Specifies the rendering features required by the application. It is
a bitwise OR of any of the following values:

 A3D_1ST_REFLECTIONS

 A3D_DISABLE_FOCUS_MUTE

 A3D_DISABLE_SPLASHSCREEN

 A3D_GEOMETRIC_REVERB

 A3D_OCCLUSIONS

 A3D_REVERB

dwRenderPrefs Reserved flag for future rendering engine options. Specify:

 A3DRENDERPREFS_DEFAULT

 	��
��4���	��

S_OK
A3DERROR_FAILED_INIT

�	��
������

It is recommended that IA3d5::InitEx be used in place of IA3d5::Init.
A3D 3.0 must be initialized before an application can play audio. Achieve this by calling
the IA3d5::Init method. Nearly all A3D 3.0 methods fail if they are called before
IA3d5::Init.
IA3d5::Init has three arguments. The first, lpGuid, is an ID for the audio device the
application wants to use to render A3D. This is passed as an LPGUID and it uniquely

�

� � $��

identifies a particular audio device. If the application wants to use the system default
audio device, this argument should be NULL.
Some rendering features, such as reflections, require hardware to be reserved, so these
features must be requested at initialization. The features required by the application are
passed in the second argument, dwFeatures, as a bitmask of the values listed above. If a
particular feature is not available, the call still succeeds and A3D still runs but without
that feature. Use IA3d5::IsFeatureAvailable to find out if a request for a feature is
successful. Requesting a feature doesn't enable it — hardware is merely reserved for the
feature. As long as a feature is available, it can be turned on or off at any time after
initialization.
The third argument, dwRenderPrefs, should always be
A3DRENDERPREFS_DEFAULT.
Note that normally, the A3D 3.0-enabled application must have the focus in order to
render audio. If the app loses focus, the output streams are muted. A3D 3.0 introduces
DISABLE_FOCUS_MUTE as a new value that will prevent the streams from being
muted when focus is lost, thus allowing apps that run in the background to still produce
audio.

&		������

IA3d5::IsFeatureAvailable
IA3dGeom2::Enable
IA3dGeom2::Disable
IA3d5::Set/GetNumFallbackSources
IA3d5::Release

�

$��

"���$33"���#7�
Initializes the A3D root object.

�
�����	�

HRESULT InitEx(
LPGUID lpGuid,
DWORD dwFeatures,
DWORD dwRenderPrefs,
HWND hWnd,
DWORD dwCoopLevel

);

��
��	�	
��
lpGuid Pointer to the GUID from the DeviceEnumeration function.

dwFeatures Specifies the rendering features required by the application. It is
a bitwise OR of any of the following values:

 A3D_1ST_REFLECTIONS

 A3D_DISABLE_FOCUS_MUTE

 A3D_DISABLE_SPLASHSCREEN

 A3D_GEOMETRIC_REVERB

 A3D_OCCLUSIONS

 A3D_REVERB

dwRenderPrefs Reserved flag for future rendering engine options. Specify:

 A3DRENDERPREFS_DEFAULT

hWnd in, handle for Resource manager

dwCoopLevel in, cooperative level

 	��
��4���	��
S_OK
A3DERROR_FAILED_INIT

�	��
������

A3D 3.0 must be initialized before an application can play audio. Achieve this by calling
the IA3d5::InitEx method. Nearly all A3D 3.0 methods fail if they are called before

�

� � $��

IA3d5::InitEx. This function replaces the old initialization method of calling
IA3d4::Init and then having to call IA3d4::SetCooperativeLevel.
IA3d5::InitEx has three arguments. The first, lpGuid, is an ID for the audio device the
application wants to use to render A3D. This is passed as an LPGUID and it uniquely
identifies a particular audio device. If the application wants to use the system default
audio device, this argument should be NULL.
Some rendering features, such as reflections, require hardware to be reserved, so these
features must be requested at initialization. The features required by the application are
passed in the second argument, dwFeatures, as a bitmask of the values listed above. If a
particular feature is not available, the call still succeeds and A3D still runs but without
that feature. Use IA3d5::IsFeatureAvailable to find out if a request for a feature is
successful. Requesting a feature doesn't enable it — hardware is merely reserved for the
feature. (Therefore, it is advised not to As long as a feature is available, it can be turned
on or off at any time after initialization.
The third argument, dwRenderPrefs, should always be
A3DRENDERPREFS_DEFAULT.
Note that normally, the A3D 3.0-enabled application must have the focus in order to
render audio. If the app loses focus, the output streams are muted. A3D 3.0 introduces
DISABLE_FOCUS_MUTE as a new value that will prevent the streams from being
muted when focus is lost, thus allowing apps that run in the background to still produce
audio.

&		������

IA3d5::IsFeatureAvailable
IA3dGeom2::Enable
IA3dGeom2::Disable
IA3d5::Set/GetNumFallbackSources
IA3d5::Release

�

$!�

"���$33"�/	���
	�.����,�	�
Checks the features available to the application after initialization.

�
�����	�

HRESULT IsFeatureAvailable(
DWORD dwFeature

);

��
��	�	
��
dwFeature Specifies the feature to query. It should be one of the following (not a

bitmask):

 A3D_1ST_REFLECTIONS

 A3D_OCCLUSIONS

 	��
��4���	��
TRUE Feature is available.

FALSE Feature not available.

�	��
������

Features are requested in a parameter passed in IA3d5::InitEx but the parameter is
exactly that — a request. It doesn't mean all the features are available. To determine
what features are available to the application after initialization, use the method
IA3d5::IsFeatureAvailable. It returns TRUE if the feature was requested and is
available and FALSE if the feature wasn't requested or isn't available.

&		������

IA3d5::InitEx

�

� � $$�

"���$33-	6 	.	
,�
Creates a new reverb object.

�
�����	�

HRESULT NewReverb(
LPA3DREVERB *ppReverb

);

��
��	�	
��
ppReverb The address of a pointer to an IA3dReverb. The function fills out the

pointer.

 	��
��4���	��
S_OK
A3DERROR_FEATURE_NOT_REQUESTED
A3DERROR_FEATURE_NOT_SUPPORTED
A3DERROR_MEMORY_ALLOCATION

�	��
������

Creates a new reverb and allocates the memory for the data structure. The reverb is
initially set to the A3DREVERB_PRESET_GENERIC preset.
In order to create an A3DReverb object, reverb must have been requested in the
IA3d5::Init or IA3d5::InitEx call by including the A3D_REVERB flag. If this was not
the case, A3DERROR_FEATURE_NOT_REQUESTED will be returned.
If reverb is not available, A3DERROR_FEATURE_NOT_SUPPORTED is returned.
To determine if reverb is going to run in hardware or software, use
IA3d5::GetHardwareCaps.
Note: Though the preferred way of freeing A3DReverb objects (and all A3D objects) is
to call the COM Release method, the IA3d5::Shutdown function will release all
A3DReverb objects created.

&		������

IA3d5::BindReverb
IA3dReverb

�

$%�

"���$33-	6&��
�	�
Creates a new source.

�
�����	�

HRESULT NewSource(
DWORD dwFlags,
LPA3DSOURCE22 *ppSource

);

��
��	�	
��
dwFlags Specifies the properties and initial state of the source. It is a bitwise OR

of the following:

 A3DSOURCE_TYPEDEFAULT

 A3DSOURCE_INITIAL_RENDERMODE_A3D

 A3DSOURCE_INITIAL_RENDERMODE_NATIVE

 A3DSOURCE_TYPEUNMANAGED

 A3DSOURCE_TYPESTREAMED

ppSource The address of a pointer to an IA3dSource2. The function fills out the
pointer value.

 	��
��4���	��

S_OK
E_INVALIDARG
A3DERROR_MEMORY_ALLOCATION
A3DERROR_FAILED_CREATE_PRIMARY_BUFFER

�	��
������

IA3d5::NewSource creates a new audio source and allocates the memory for the data
structure. The value of dwFlags determines the type of source being created and its
initial render mode. If dwFlags is set to A3DSOURCE_TYPEDEFAULT the source will
be a resource managed A3D source that is set up for static (as opposed to streaming)
wave data.
A 3D sources can be positioned in 3D space and are affected by any geometry and
atmospheric properties. Typically, any sound that moves around or has a specific
position in the world should be an A3D source. Native sources can be panned left and

�

� � $'�

right, are not affected by geometry or the atmosphere, and are useful for playing back
music or sound effects that are pre-encoded with spatial information. The two initial
render modes are exclusive - if both are set the source will be created as a native source.
While the render mode chosen here is the initial render mode, it can't be changed later
for unmanaged sources. Only managed sources can be freely switched between native
and A3D modes while they are playing. See the A3D 3.0 Platform Guide and Resource
Manager document for information on managed and unmanaged sources.
Use A3DSOURCE_TYPESTREAMED if you intend to dynamically stream wave data
into the source.
No memory or wave data is allocated here, only memory for the data fields in the source.
As such, it's rare that this method fails. Wave data memory is allocated when the
application calls either IA3dSource2::LoadWaveFile or
IA3dSource2::AllocateAudioData. Check the return codes of these methods.
A source must be released when it is no longer needed. This frees any memory and
resources allocated to it, and allows them to be used by another source. Use
IA3dSource2::Release for this purpose.

&		������

IA3dSource2::LoadFile
IA3dSource2::AllocateAudioData
IA3dSource2::Release
IA3dSource2::SetRenderMode

�

$(�

"���$338�	
�"��	
���	�
Returns an interface pointer for a supported interface.

�
�����	�

HRESULT QueryInterface(
REFIID iid,
LPVOID FAR *pInterface

);

��
��	�	
��
iid Interface identifier. Specify one of:

 IID_IA3dListener

 IID_IA3dGeom2

 IID_IA3d5

pInterface Address of a pointer to an interface which will be filled out by the
method.

 	��
��4���	��

S_OK
E_NOINTERFACE
A3DERROR_FAILED_INIT_QUERIED_INTERFACE

�	��
������

All A3D interfaces inherit the IUnknown interface that contains a method called Query-
Interface. This method is used to let the application know what other interfaces a
particular interface supports, and to return a pointer to a requested interface if it is
supported. The different A3D interfaces support different interfaces.
From IA3d5::QueryInterface, the following interfaces are available: IID_IA3dListener,
which will return a pointer to the IA3dListener interface, IID_IA3dGeom2, which will
return a pointer to the IA3dGeom2 interface, and IID_IA3d5, itself, which will return
another pointer to the IA3d5 interface and increment its reference count.
Calling any QueryInterface and asking for an interface that isn't supported will return
the error E_NOINTERFACE. The address of the pointer passed in to the method will be
left at the value it was set to by the calling method, so it may not be NULL. For this
reason, it is essential to check the return value of this method.

�

� � $)�

If a valid interface is requested in the call to IA3d5::QueryInterface, but something has
gone wrong during the A3D initialization, the method will return
A3DERROR_FAILED_INIT_QUERIED_INTERFACE.

&		������

IA3d5::AddRef
IA3d5::Release

�

%0�

"���$33 	����	
��
Unsupported.

�
�����	�

HRESULT RegisterApp(
REFIID riid

);

��
��	�	
��
riid

 	��
��4���	��

S_OK

�	��
������

None.

&		������

None.

�

� � %��

"���$33 	����	
4	
�����
Tell the library what version the application was built with.

�
�����	�

 HRESULT RegisterVersion(
DWORD dwVersion

);

��
��	�	
��
dwVersion Specifies the version of A3D the app was compiled with. Should always

be A3D_CURRENT_VERSION.

 	��
��4���	���

S_OK
A3DERROR_FUNCTION_NOT_VALID_BEFORE_INIT

�	��
�������

This method is used to stamp an application with a record of the A3D version it was
compiled with. Currently the call is ignored but future releases may use this to enable
older algorithms for applications that depended on a particular behavior.

&		�������

None.

�

%��

"���$33 	�	��	�
Decrements the IA3d5 reference count.

�
�����	�

ULONG Release(
void

);

��
��	�	
��
None.

 	��
��4���	��

Returns the new reference count.

�	��
������

When going through a COM method such as QueryInterface or NewSource to get an
interface pointer to a component, the reference count of the component is automatically
incremented. The reference count is used to let the component know when nothing is
accessing it anymore and that it can delete itself from memory.
Calling IA3d5::Release decrements the reference count for the IA3d5 interface, and if it
is 0, the object deletes itself from memory.
Note that IA3d5, IA3dGeom2, and IA3dListener all share the same reference count, as
they are simply different interfaces onto the same base object. Only when all three have
been released will the reference count of any one of them be 0.
All A3D 3.0 interfaces inherit the COM IUnknown interface that contains the methods
AddRef, QueryInterface, and Release. Inside COM by Microsoft Press is an excellent
resource for detailed information on COM.

&		������

IA3d5::AddRef
IA3d5::QueryInterface

�

� � %��

"���$33&	�9�	����	
���.	2	.	���
Sets and gets the cooperative level for the application.

�
�����	�

HRESULT SetCooperativeLevel(
HWND hWnd,
DWORD dwLevel

);

HRESULT GetCooperativeLevel(
DWORD *pdwLevel

);

��
��	�	
��
hWnd Window handle of the application.

dwLevel Specify A3D_CL_NORMAL or A3D_CL_EXCLUSIVE for the priority.

 	��
��4���	��

S_OK
E_INVALIDARG
A3DERROR_FAILED_SETCOOPERATIVE_LEVEL

�	��
������

Several applications can run on a single audio device at the same time. Use
IA3d5::SetCooperativeLevel immediately after IA3d5::Init to determine the level of
access an application has to the audio device.
The first argument specifies the window handle of the application. This is necessary so
that A3D can keep track of when the window loses input focus.
When dwLevel is set to A3D_CL_NORMAL (the recommended setting), the audio
device being used is left available to other applications. However, the level of access to
the hardware is dependent on the particular implementation of A3D. For example, on
Vortex2 systems, only one application may have access to the hardware required for
rendering reflections at any time, whether reflections are actually being rendered or not.
To stop any other applications from running on the same audio device, dwLevel should
be set to A3D_CL_EXCLUSIVE.
Use of this method is mandatory — it has to be called because it's the only way A3D can
reliably get the window handle of the application.

�

%!�

&		������

IA3d5::InitEx
IA3d5::Init

�

� � %$�

"���$33&	�9�	����
�����	&���	��
Sets and gets the coordinate system.

�
�����	�

HRESULT SetCoordinateSystem(
DWORD dwCoordSystem

);

HRESULT GetCoordinateSystem(
DWORD *pdwCoordSystem

);

��
��	�	
��
dwCoordSystem Specifies the coordinate system to use. Can be either

A3D_RIGHT_HANDED_CS or A3D_LEFT_HANDED_CS.

 	��
��4���	��

S_OK

�	��
������

There are two systems in Euclidean geometry for specifying coordinates: right-handed
and left-handed systems. In a right-handed system, positive X goes right, positive Y goes
up, and positive Z comes out of the screen toward you. A left-handed system has Z
going the other way, positive into the screen away from you. Most graphics systems and
virtually all graphics textbooks use a right-handed coordinate system, and this is the
default for A3D 3.0. However, some use a left-handed system (in fact, A3D 1.0 uses a
left-handed system), so the IA3d5::SetCoordinateSystem method lets an application
select the system that matches the graphics library being used.
If an application wants to call IA3d5::SetCoordinateSystem, it should call it
immediately after initialization. Typically, it should be called after IA3d5::InitEx (or
IA3d5::Init and IA3d5::SetCooperativeLevel). Once the coordinate system is set, it
can never be changed.
The selected coordinate system is applied to all 3D data that is sent to A3D, whether that
data is source position, listener orientation, or the coordinates of a vertex, for example.
The choice is there purely for convenience but there may be a very slight performance
gain when using a right-handed system, as this is the system native to A3D 3.0.

�

%%�

&		������

IA3d5::InitEx
IA3d5::Set/GetCooperativeLevel

�

� � %'�

"���$33&	�9�	��������	*��	�&���	�
Globally scales the distance model attenuation curve.

�
�����	�

HRESULT SetDistanceModelScale(
A3DVAL fScale

);

HRESULT GetDistanceModelScale(
A3DVAL *fScale

);

��
��	�	
��
fScale Non-negative floating point number specifying the scale factor applied

to the distance model.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

IA3d5::SetDistanceModelScale globally changes the attenuation rate of sources due to
distance from the listener. fScale changes the slope of the attenuation curve after a source
is beyond its minimum distance.
The default value is 1.0, which means the gain of a source will be reduced by 6 dB for
each doubling in distance, starting at the minimum distance. Values less than 1.0 reduce
the effect of distance by stretching the curve out, and values greater than 1.0 increase the
effect.
This scale factor is applied in addition to any distance model scale factors specified for
each particular source. In common with all global/local scalars, fScale is multiplied by
the source factor, which is set using IA3dSource2::SetDistanceModelScale.
See IA3dSource2::SetMinMaxDistance and IA3dSource2::SetDistanceModelScale for
information on the distance model.

�

%(�

&		������

IA3dSource2::Set/GetDistanceModelScale
IA3dSource2::Set/GetMinMaxDistance

�

� � %)�

"���$33&	�9�	����	
&���	�
Globally scales the effect of Doppler.

�
�����	�

HRESULT SetDopplerScale(
A3DVAL fScale

);

HRESULT GetDopplerScale(
A3DVAL *fScale

);

��
��	�	
��
fScale Non-negative floating point number specifying the Doppler multiplier.

 	��
��4���	��

S_OK
E_INVALIDARG

�	�
������

The Doppler effect is the change in pitch of a sound caused by the motion of the listener
and the object making the sound through air. Sounds traveling towards a listener appear
to have a higher pitch, and those traveling away have a lower pitch.
IA3d5::SetDopplerScale globally applies a scale factor to the Doppler effect for all
sources. fScale is used to change the effective speed of sound for Doppler calculations,
thereby exaggerating or diminishing the effect.
If 0.0 < fScale < 1.0, the speed of sound is increased, reducing the amount of pitch bend
for any given object speed. If fScale > 1.0, the speed of sound is reduced, increasing the
amount of pitch bend. 0.0 turns Doppler shifting completely off, and 1.0 (the default)
leaves the speed of sound unchanged at 340m/s.

�

'0�

This scale factor is applied in addition to any doppler scale factor specified for each
particular source. In common with all global/local scalars, fScale is multiplied by the
source factor, which is set using IA3dSource2::SetDopplerScale.

&		������

IA3dSource2::Set/GetDopplerScale
IA3dSource2::Set/GetPitch
IA3dSource2::Set/GetVelocity

�

� � '��

"���$33&	�9�	�#:�
Sets the global equalization for all sources.

�
�����	�

HRESULT SetEq(
A3DVAL fEq

);

HRESULT GetEq(
A3DVAL *fEq

);

��
��	�	
��
fEq Floating point number between 0.0 and 1.0 inclusive.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

IA3d5::SetEq globally applies an equalization effect to all sources. It is similar in effect
to a treble control on a stereo system and is completely independent of distance and gain.
It is low-pass only and doesn't allow high frequencies to be boosted.
If 0.0 < fEq < 1.0, high frequencies are attenuated more as fEq approaches 0.0. The
default setting of 1.0 means there is no additional high frequency attenuation applied to
sources.
This method is useful for simulating different environments. For example, fEq = 0.3
would make everything sound like it was underwater.
This EQ value is applied in addition to any EQ value specified for each particular source.
In common with all global/local scalars, fEq is multiplied by the source EQ value, which
is set using IA3dSource2::SetEq.

&		������

IA3dSource2::Set/GetEq

�

'��

"���$33&	�9�	�1/�,��
,/����
��
Unsupported

�
�����	��

HRESULT SetHFAbsorbFactor(
FLOAT fFactor

);

HRESULT GetHFAbsorbFactor(
FLOAT *fFactor

);

��
��	�	
���
fFactor

 	��
��4���	���

A3DERROR_UNIMPLEMENTED_FUNCTION

�	��
�������

This was an old method used to set attenuate the high frequencies for all sources. Use
IA3d5::SetEq instead.

&		�������

IA3d5::Set/GetEq

�

� � '��

"���$33&	�9�	�*�7 	��	������	������	�
Sets the maximum delay possible for reflections.

�
�����	�

HRESULT SetMaxReflectionDelayTime(
A3DVAL fSeconds

);

HRESULT GetMaxReflectionDelayTime(
A3DVAL *fSeconds

);

��
��	�	
��
fSeconds Maximum delay time in seconds between a reflection and its direct path.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

Rendering reflections requires that some amount of the direct path audio stream be kept
around after it has been played so that a delayed version of it can be played back later.
The longer the delay between the direct path and the last reflection, the greater the
amount of data that has to be stored.
IA3d5::SetMaxReflectionDelayTime allows an application to specify the maximum
time difference between the direct path and the longest reflection. The default of 0.3
seconds is adequate for modeling spaces up to the size of a football stadium. Reflections
with delays greater than the time set by this method are clamped to the maximum delay
but attenuation due to distance is computed normally.
This method is not a geometry method, which is why it is in IA3d5 instead of
IA3dGeom2 with the other reflection methods. It is used to allocate memory in the
driver, and this memory is allocated as long as reflections are successfully requested in
the call to IA3d5::InitEx, whether they are actually enabled and used or not. The time
set by IA3d5::SetMaxReflectionDelayTime is not scaled by
IA3dGeom2::SetReflectionDelayScale.
Negative values for fSeconds cause this method to return E_INVALIDARG.

�

'!�

&		������

IA3d5::InitEx

�

� � '$�

"���$33&	�9�	�-��/���,���&��
�	��
Sets the number of fallback software channels.

�
�����	�

HRESULT SetNumFallbackSources(
DWORD dwNumSources

);

HRESULT GetNumFallbackSources(
DWORD *dwNumSources

);

��
��	�	
��
dwNumSources Number of fallback sources to be allocated.

 	��
��4���	��

S_OK
E_FAIL
A3DERROR_FUNCTION_NOT_VALID_BEFORE_INIT

�	��
������

This method enables you to specify the number of A2D sources. If you don't specify a
number of A2D sources the default value of 12 is used. In cases where it is necessary to
play more sources concurrently than the hardware is able to handle, A2D is able to play
the less important sources in software. Importance is a function of source priority and
audibility, with the bias between those two properties being specified in a call to
IA3d5::SetRMPriorityBias.
This method can't be called before A3D is initialized by IA3d5::InitEx, but the number
of fallback sources can be changed dynamically.
In the absence of A3D hardware, A2D can completely fill in, using its internal renderer
to play sources in software or making use of other 3D hardware on the system. A2D is
the backup audio engine for A3D and emulates much of the functionality of A3D in
software.

&		������

IA3d5::Set/GetRMPriorityBias
IA3dSource2::Set/GetPriority

�

'%�

"���$33&	�9�	�;���������
Sets and gets the global output gain for all A3D sources.

�
�����	�

HRESULT SetOutputGain(
A3DVAL fGain

);

HRESULT GetOutputGain(
A3DVAL *fGain

);

��
��	�	
��
fGain Global output gain.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

IA3d5::SetOutputGain is the master volume control for all A3D, A2D and DS3D
sources. Changing the output gain globally and uniformly scales the gains of all sources
and reflections.
fGain is in the range 0.0 to 1.0, where 0.0 is silence and 1.0 is 0 dB. Each reduction by
half represents a 6 dB attenuation. This method is the global equivalent of
IA3dSource2::SetGain.
IA3d5::GetOutputGain gets the current global output gain setting.

&		������

IA3dSource2::SetGain

�

� � ''�

"���$33&	�9�	�;����*��	��
Sets and gets the speaker output mode.

�
�����	��

HRESULT SetOutputMode(
DWORD dwXTalk1,
DWORD dwXTalk2,
DWORD dwMode

);

HRESULT GetOutputMode(
DWORD *dwXTalk1,
DWORD *dwXTalk2,
DWORD *dwMode

);

��
��	�	
���
dwXTalk1 Specifies the cross-talk mode for output 1. Specify one of

OUTPUT_HEADPHONES, OUTPUT_SPEAKERS_WIDE,
OUTPUT_SPEAKERS_NARROW.

dwXTalk2 Specifies the cross-talk mode for output 2. Specify one of
OUTPUT_HEADPHONES, OUTPUT_SPEAKERS_WIDE,
OUTPUT_SPEAKERS_NARROW.

dwMode Specifies whether two stereo outputs are used for quad or stereo. Specify
either OUTPUT_MODE_STEREO or OUTPUT_MODE_QUAD.

 	��
��4���	���

S_OK
E_INVALIDARG
A3DERROR_FUNCTION_NOT_VALID_BEFORE_INIT

�	��
�������

The output mode of the audio device determines what type of cross-talk algorithm, if
any, to apply to the final signal. A cross-talk canceller is used when listening to speakers
to eliminate the signal from the left speaker reaching the right ear and vice versa.
There are three output modes available. OUTPUT_MODE_HEADPHONES disables the
cross-talk canceller since, when wearing headphones, each ear hears only the near
speaker. OUTPUT_MODE_NARROW enables the cross-talk canceller with an

�

'(�

algorithm designed for speakers placed quite close together, as they are with speakers
built into a monitor. OUTPUT_MODE_WIDE enables a different algorithm, which is
designed for speakers placed further apart, for example when a pair of satellite speakers
are placed on opposite sides of the monitor. Some A3D devices support two outputs.
Whether those can be set to different output modes or not depends on the particular
device.
The dwMode parameter is used to switch A3D devices which support two sets of
speakers between outputting a pair of binaural signals and a quad-speaker output where
the first output feeds the front speakers and the second the rear speakers.

&		������

None.

�

� � ')�

"���$33&	�9�	� 	���
�	*����	
*��	��
Unsupported

�
�����	��

HRESULT SetResourceManagerMode(
DWORD dwMode

);

HRESULT GetResourceManagerMode(
DWORD *dwMode

);

��
��	�	
���
dwMode Resource Manager mode flags.

 	��
��4���	���

A3DERROR_UNIMPLEMENTED_FUNCTION

�	��
�������

This is an old method that should not be used. The resource management mode is
specified per source in IA3d5::NewSource.

&		�������

IA3d5::NewSource
IA3dSource2::GetType

�

(0�

"���$33&	�9�	� *�
��
���5����
Sets the weight of priority to audibility for all resource-managed sources.

�
�����	�

HRESULT SetRMPriorityBias(
A3DVAL fBias

);

HRESULT GetRMPriorityBias(
A3DVAL *fBias

);

��
��	�	
��
fBias A number in the range 0.0 to 1.0 for priority bias.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

The resource manager determines whether to play a source or not based on a weight it
computes for that source. This weight is a function of audibility and priority. Audibility
is calculated internally by A3D and takes into account source attenuation due to distance,
gain, equalization and occlusions. As such, audibility is not directly controlled by the
application. Priority is set by the application and is used to determine how important a
source is.
While the priority of a source can be set by an application, setting the priority to
maximum may still not be enough to guarantee that the source is played if its audibility is
low. The method IA3d5::SetRMPriorityBias is used to bias the weight calculation
towards priority, allowing the resource manager algorithm to place more importance on
either priority or audibility.
The default value is 0.5, which places equal weight on priority and audibility. Values
greater than 0.5 bias the calculation towards priority, and values less than 0.5 bias it
towards audibility. The resource manager algorithm is weight = (fAud*(1 - fBias)) +
(fPriority * fBias), where fBias is provided by this method, fPriority by
IA3dSource2::SetPriority, and fAud is computed internally by A3D.

�

� � (��

&		������

IA3d5::NewSource
IA3dSource2::Set/GetPriority

�

(��

"���$33&	�9�	�&�
	������
�	
��	��
 Modifies control values used by the streaming engine.

�
�����	�

HRESULT SetStreamingProperties(
DWORD dwBufferLength
DWORD dwThreadPriority

);

HRESULT GetStreamingProperties(

DWORD *dwBufferLength
DWORD *dwThreadPriority

);

��
��	�	
��
dwBufferLength The amount of data to buffer, in milliseconds.

dwThreadPriority The priority of the streaming thread. The accepted values are:

 A3D_STREAMING_PRIORITY_NORMAL (default)

 A3D_STREAMING_PRIORITY_HIGH

 A3D_STREAMING_PRIORITY_HIGHEST

 	��
��4���	��
S_OK
A3DERROR_STREAMING_BUFFER_LENGTH
A3DERROR_STREAMING_PRIORITY

�	��
������

The amount of data to buffer is specified in milliseconds, so as to be independent of the
wave data format. This number can be directly converted from a time value into a byte
value, and is the minimum amount of data that should be "queued" up to play at any
given time. The default value is 900 ms (0.9s) - three times the maximum reflection
delay time, 0.3s. Setting the buffer length will only affect subsequent calls to
IA3dSource2::LoadFile. Existing streams will remain unchanged. When the buffer is
larger than the file being played, the buffer will automatically be resized to the size of
the file.

�

� � (��

If the application uses a lot of high priority threads, or is very CPU intensive, there may
be dropouts in the streaming, If this happens, use this parameter to raise the thread’s
priority.
Note: The safest time to set the thread priority is before any streaming sources start
playing. However, making this call does not immediately change the streaming thread’s
priority. It is determined internally when the thread can change priority.

A3DERROR_BUFFER_LENGTH will be returned if the value requested for
dwBufferLength greater than 10,000 (ms).

A3DERROR_STREAMING_PRIORITY will be returned if the value requested for
dwThreadPriority is invalid.

&		������

None.

�

(!�

"���$33&	�9�	�<�����	
*	�	
�
Specifies the number of application units in a meter.

�
�����	�

HRESULT SetUnitsPerMeter(
A3DVAL fUnits

);

HRESULT GetUnitsPerMeter(
A3DVAL *fUnits

);

��
��	�	
��
fUnits Floating point number specifying the number of units in a meter.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

This method is used to tell the A3D library what units the application is using. By
default, A3D expects everything in meters - positions and vectors are measured in meters
and velocities in meters per second - so the default value is 1.0. Specifying another value
applies a conversion inside A3D to compensate for the different units.
For example, if an application is specifying everything in kilometers, it would set fUnits
to 0.001f. If it is using inches, fUnits should be set to 39.37f.
The effect of calling this method is not retroactive. Data already sent to A3D, whether it
is the location of a source or a list of polygons cached in a list, is not modified. It only
affects future data. For this reason, it is inadvisable to use IA3d5::SetUnitsPerMeter
dynamically. It should be set once at the beginning before any sources are created and
left at that value.
Irrespective of what the current units are, the default minimum and maximum distance
values for a source are 1m and 5000m respectively. This means that calling
IA3dSource2::GetMinMaxDistance before explicitly setting the minimum and
maximum distances will return different values depending on the current units since it is
returning 1m and 5000m converted to application units. For example, if fUnits is 10,
calling IA3dSource2::GetMinMaxDistance will return 10 and 50000 as the default
values. If fUnits is 0.2, the default values returned will be 0.2 and 1000.

�

� � ($�

There is no performance impact from using units other than meters.

&		������

IA3dSource2::Set/GetMinMaxDistance

�

(%�

"���$33&	�*�71�
�6�
	&��
�	��
Sets the maximum number of hardware sources that can be allocated by the resource
manager.

�
�����	�

HRESULT SetMaxHardwareSources(
DWORD nMaxHardwareFallback

);

��
��	�	
��
nMaxHardwareFallback maximum number of hardware sources to use

 	��
��4���	��
S_OK
E_INVALIDARG
A3DERROR_FUNCTION_NOT_VALID_AFTER_INIT

�	��
������

The A3D resource manager, by default, will use as many hardware resources as it needs.
If a machine has a sound card with 16 available hardware streams and the application
attempts to play 20, all 16 hardware resources will be used. However, some applications
need to occasionally lock down a hardware source (such as for streaming a large file
from disk). If an application knows ahead of time that it will need a hardware resource it
can use IA3d5::GetHardwareCaps to determine how many total hardware resources
are available, decide how many resources it needs to reserve, and then pass the
difference into IA3d5::SetMaxHardwareSources.
This function only applies to the resource manager. Unmanaged sources can be
allocated only if they’re available. Also this function can only be allocated before
IA3d5::InitEx is called. Otherwise the error code
A3DERROR_FUNCTION_NOT_VALID_AFTER_INIT is returned.
While not documented, there is an IA3d5::GetMaxHardwareSources function call that
allows you to see how many sources you have previously allocated, should you need that
information.

&		������

IA3d5::InitEx
IA3d5::GetHardwareCaps

�

� � ('�

"���$33&�����6��
Releases all A3D interfaces and any resources associated with them.

�
�����	�

HRESULT Shutdown(
void

);

��
��	�	
��
None.

 	��
��4���	��

S_OK

�	��
������

IA3d5::Shutdown is a convenience method which blindly releases all A3D interfaces
and the memory associated with them, removing the need to call the Release method for
each object the application has created. It also ensures that any other A3D resources,
such as hardware audio channels, are properly shut down.
Some care should be exercised when using this method. IA3d5::Shutdown can't null out
any pointers to interfaces the application has, so the following code would cause a crash:

pIA3dGeom2->NewList(&pDungeon);
pIA3d5->Shutdown();
pDungeon->Begin();

After calling IA3d5::Shutdown, any A3D interface pointers are invalid and the
application should set them to NULL. The same care has to be taken when using any of
the interface Release methods, but in that case it is easy to keep track of the invalid
interface pointers since they are manually released one at a time.

&		������

IA3d5::Release

�

((�

"���$33<�����/���,�������	���	
�
Checks for valid key to enable Dolby Digital AC-3 support. Dolby Digital software
fallback will only work if it is unlocked. A game must set a valid key to A3D, before
using Dolby Digital software fallback decoding.

�
�����	�

HRESULT UnlockFallbackAC3Decoder(
LPSTR szKey,
DWORD dwReserved

);

��
��	�	
��
szKey Key for unlocking Software decoding AC-3

dwReserved Don’t use

 	��
��4���	��
S_OK
A3DERROR_INVALID_AC3_KEY

�	��
������

In order for an application to use Dolby Digital decoding, a licensing agreement has to be
in place with Dolby. In most cases, getting the AC-3 content requires such a license, and
receiving A3D support is simple. Contact devsupport@a3d.com for more information
about receiving a Dolby Digital license.
Once the license is in place, a unique key will be generated for this application. The key
takes the form of a text string. Pass it in to this function once at initialization time and
AC-3 decoding will be available for this A3D session. Once the object is destroyed,
UnlockFallbackAC3Decoder must be called again.

&		������

None.

mailto:devsupport@a3d.com

�

� � ()�

���#-<*��225��=�
BOOL CALLBACK A3DENUMCALLBACK(

LPGUID lpGuid,
LPCSTR lpcstrDescription,
LPCSTR lpcstrModule,
LPVOID lpContext

);

�	��
������

This callback is used in conjunction with the IA3d5::A3dEnumerate function. Its
purpose is to enumerate all available sound devices on the system, passing a unique
identifier and a textual description of each. After the call to A3dEnumerate, the A3D 3.0
engine calls A3DENUMCALLBACK once for each sound device. It is up to the
application to remember all or some of the GUID’s and then choose the desired one.
Once a GUID has been determined, it is passed into IA3d5::Init or IA3d5::InitEx, and
the A3D 3.0 engine will initialize and render using that device.

�
���	����
LPGUID lpGuid Unique identifier for this device.

LPCSTR lpcstrDescription Pointer to a NULL terminated string that
describes this device.

LPCSTR lpcstrModule Pointer to a NULL terminated string that
describes the driver name for this device.

LPVOID lpContext A 32-bit pointer, determined by the application,
that is passed into each call to
A3DENUMCALLBACK unchanged. This is
useful for keeping state across calls and for
accessing global data.

 	��
��4���	��

Return True to continue enumerating, False to stop.

�

)0�

"���2���	�	
�"��	
���	�
A3D is rendered from the perspective of a listener, just as graphics are displayed from a
viewpoint. The position and orientation of the listener determines how the scene ultimately
sounds and the IA3dListener interface provides the methods for controlling the listener
parameters.

A3D creates a listener at initialization. The application gains access to it by querying for the
interface in the following way:

/* IA3d5 already exists... */

hr = pA3d5->QueryInterface(IID_IA3DLISTENER, &pListener);

The variable pListener is a pointer to the listener interface and all listener methods are accessed
through this.

The listener has 3 properties:
! Position
! Orientation
! Velocity

There are two methods for setting each property; the only difference between them being the data
type passed:

! Send values of a property individually (three numbers to represent the X, Y, and Z
coordinates)

! Send values together in an array

To set the position of the listener, use:
pListener->SetPosition3f(fLisX, fLisY,fLisZ);

To set the orientation of the listener, use:
pListener->SetOrientation6f(fLisDirX, fLisDirY, fLisDirZ,

fLisUpX, fLisUpY, fLisUpZ);

Remember that the two vectors should be unit vectors and perpendicular to each other.

�

� �)��

To set the velocity of the listener, use:
pListener->SetVelocity3f(fLisVelX, fLisVelY, fLisVelZ);

As with all linear measurements in A3D, the default units here are metric (meters for distance
and meters per second for velocity).

It's worth noting at this point that the ultimate results of calls to these three methods can be
modified by a transformation matrix. This is discussed in Chapter 6: “Geometry Engine
Reference Pages”. For now, when dealing with direct path only, matrices can be ignored and the
methods set up the listener exactly in accordance with the values sent to them.

�

)��

"���2���	�	
33��� 	��
Increments the IA3dListener reference count.

�
�����	�

ULONG AddRef(
void

);

��
��	�	
��
None.

 	��
��4���	��

Returns the new reference count.

�	��
������

When going through a COM method such as QueryInterface or NewSource to get an
interface pointer to a component, the reference count of the component is automatically
incremented. The reference count is used to let the component know when nothing is
accessing it anymore and that it can delete itself from memory.
Whenever an interface pointer is assigned to another interface pointer, the AddRef
method should be called to let the component know that two pointers are using the same
interface. Now when the Release method is called, the component won't delete itself
since it has been told something else is still using it. Consider the following example:

hr = pRoot->QueryInterface(IID_IBox, (void **)&pBox1);
if (SUCCEEDED(hr))
{

pBox1->DrawIt();
pBox2 = pBox1;
pBox2->AddRef();
pBox1->Release();

}

While pBox1 is now invalid because it has been released, pBox2 remains intact and can
still be used.
All A3D 3.0 interfaces inherit the COM IUnknown interface, which contains the
methods AddRef, QueryInterface, and Release. Inside COM by Microsoft Press is an
excellent resource for detailed information on COM.

�

� �)��

&		������

IA3dListener::QueryInterface
IA3dListener::Release

�

)!�

"���2���	�	
338�	
�"��	
���	�
Returns an interface pointer for a supported interface.

�
�����	�

HRESULT QueryInterface(
REFIID iid,
LPVOID FAR *pInterface

);

��
��	�	
��
iid Interface identifier. Specify only IID_IA3dListener.

pInterface Address of a pointer to an interface which will be filled out by the
method

 	��
��4���	��

S_OK
E_NOINTERFACE

�	��
������

All A3D interfaces inherit the IUnknown interface that contains a method called Query-
Interface. This method is used to let the application know what other interfaces a
particular interface supports, and to return a pointer to a requested interface if it is
supported. The different A3D interfaces support different interfaces.
The IA3dListener interface doesn't support any other interfaces, so the only valid value
for iid is IID_IA3dListener, which will return another listener interface pointer and
increment the reference count.
Calling any QueryInterface and asking for an interface that isn't supported will return
the error E_NOINTERFACE. The address of the pointer passed in to the method will be
left at the value it was set to by the calling method, so it may not be NULL. For this
reason, it is essential to check the return value of this method.

&		������

IA3dListener::AddRef
IA3dListener::Release

�

� �)$�

"���2���	�	
33 	�	��	�
Decrements the IA3dListener reference count.

�
�����	�

ULONG Release(
void

);

��
��	�	
��
None.

 	��
��4���	��

Returns the new reference count.

�	��
������

When going through a COM method such as QueryInterface or NewSource to get an
interface pointer to a component, the reference count of the component is automatically
incremented. The reference count is used to let the component know when nothing is
accessing it anymore and that it can delete itself from memory.
Calling IA3dListener::Release decrements the reference count for the IA3dListener
interface, and if it is 0, the object deletes itself from memory.
Note that IA3d5, IA3dGeom2, and IA3dListener all share the same reference count, as
they are simply different interfaces onto the same base object. Only when all three have
been released will the reference count of any one of them be 0.
All A3D 3.0 interfaces inherit the COM IUnknown interface that contains the methods
AddRef, QueryInterface, and Release. Inside COM by Microsoft Press is an excellent
resource for detailed information on COM.

&		������

IA3dListener::AddRef
IA3dListener::QueryInterface

�

)%�

"���2���	�	
33&	�9�	�;
�	��������
Sets and gets the orientation of the listener.

�
�����	�

HRESULT SetOrientation6f(
A3DVAL fFrontX, A3DVAL fFrontY, A3DVAL fFrontZ,
A3DVAL fUpX, A3DVAL fUpY, A3DVAL fUpZ

);

HRESULT SetOrientation6fv(
A3DVAL *fFrontXYZUpXYZ

);

HRESULT GetOrientation6f(
A3DVAL *fFrontX, A3DVAL *fFrontY, A3DVAL *fFrontZ,
A3DVAL *fUpX, A3DVAL *fUpY, A3DVAL *fUpZ

);

HRESULT GetOrientation6fv(
A3DVAL *fFrontXYZUpXYZ

);

��
��	�	
��

fFrontX, fFrontY, fFrontZ Three dimensional vector defining the front direction.
fUpX, fUpY, fUpZ Three dimensional vector defining the up direction.
fFrontXYZUpXYZ Array of six A3DVALs describing the front and up directions.

 	��
��4���	��

S_OK

�	��
������

IA3dListener::SetOrientation sets the orientation of the listener in 3D space. The
parameters it takes are two perpendicular vectors defining the forward and up directions
for the listener.
The orientation described by these vectors is relative to the transformation applied to the
listener. If IA3dGeom2::BindListener is not being used, there is no transformation
applied to the listener so the vectors are absolute. If IA3dGeom2::BindListener is being
used, the vectors are relative to the coordinate system described by the current matrix
when IA3dGeom2::BindListener was called.

� �

� �)'�

Using this method to set the listener orientation will override the results of using
IA3dListener::SetOrientationAngles. The two methods simply use different inputs to
perform the same function.
IA3dListener::GetOrientation returns the orientation vectors of the listener relative to
its coordinate system. If IA3dListener::SetOrientationAngles has been used, the
vectors will have been computed from the the angles supplied to that method, so those
vectors will be returned rather than the last set of vectors sent to
IA3dListener::SetOrientation. Unlike angles, using vectors to describe an orientation
is deterministic — for a given orientation there is only one set of front and up vectors
that define that orientation.

&		������

IA3dListener::Set/GetOrientationAngles
IA3dGeom2::BindListener

�

)(�

"���2���	�	
33&	�9�	�;
�	�����������	��
Sets and gets the orientation of the listener.

�
�����	�

HRESULT SetOrientationAngles3f(
A3DVAL fHeading, A3DVAL fPitch, A3DVAL fRoll,

);

HRESULT SetOrientationAngles3fv(
A3DVAL *fHPR,

);

HRESULT GetOrientationAngles3f(
A3DVAL *pHeading, A3DVAL *fPitch, A3DVAL *fRoll,

);

HRESULT GetOrientationAngles3fv(
A3DVAL *fHPR,

);

��
��	�	
��
fHeading, fPitch, fRoll Euler angles describing the orientation of the listener.

fHPR Array of three A3DVALs describing heading, pitch and roll.

 	��
��4���	��

S_OK

�	��
������

IA3dListener::SetOrientationAngles sets the orientation of the listener in 3D space.
The parameters it takes are rotation values in degrees. fHeading represents rotation
around the Y (up) axis, fPitch rotation about the X (right) axis, and fRoll rotation about
the Z (out) axis. The rotations are applied in the following order: fHeading, fPitch, and
fRoll.
The rotation described by the three angles is relative to the transformation applied to the
listener. If IA3dGeom2::BindListener is not being used, there is no transformation
applied to the listener so the angles are absolute. If IA3dGeom2::BindListener is being
used, the rotation is relative to the coordinate system described by the current matrix
when IA3dGeom2::BindListener was called.

� �

� �))�

Using this method to set the listener orientation will override the results of using
IA3dListener::SetOrientation. The two methods simply use different inputs to perform
the same function.
IA3dListener::GetOrientationAngles returns the rotation angles of the listener relative
to its coordinate system. If IA3dListener::SetOrientation has been used, the angles will
have been computed from the two vectors supplied to that method, so those angles will
be returned rather than the last set of angles sent to
IA3dListener::SetOrientationAngles. It's worth noting that the same orientation can be
described by more than one set of rotation angles. For example, heading, pitch and roll of
0, 0, 0 is the same as 180, 180, 180. If the orientation was set using the vector method,
IA3dListener::GetOrientationAngles might not return the most obvious angles for that
orientation although they will be correct.

&		������

IA3dListener::Set/GetOrientation
IA3dGeom2::BindListener

�

�00�

"���2���	�	
33&	�9�	����������
Sets and gets the direction of the listener.

�
�����	�

HRESULT SetPosition3f(
A3DVAL fx, A3DVAL fy, A3DVAL fz

);

HRESULT SetPosition3fv(
A3DVAL *fxyz

);

HRESULT GetPosition3f(
LPA3DVAL fx, LPA3DVAL fy, LPA3DVAL fz

);

HRESULT GetPosition3fv(
LPA3DVAL fxyz

);

��
��	�	
��
fx, fy, fz Three A3DVALs for the position of the listener.

fxyz An array of three A3DVALs for the position of the listener.

 	��
��4���	��

S_OK

�	��
������

IA3dListener::SetPosition sets the location of the listener in 3D space. The parameters
it takes specify the location of the listener in three-dimensional space. If
IA3dGeom2::Listener was used to apply a transformation to the listener, the
coordinates specified in IA3dListener::SetPosition will be modified by that
transformation. If the listener isn't bound to a matrix, the position set by this method will
be in absolute world coordinates.

&		������

IA3dListener::Set/GetOrientation
IA3dGeom2::BindListener

� �

� � �0��

"���2���	�	
33&	�9�	�4	�������
Sets and gets the velocity of the listener.

�
�����	�

HRESULT SetVelocity3f(
A3DVAL fvx, A3DVAL fvy, A3DVAL fvz

);

HRESULT SetVelocity3fv(
A3DVAL *fvxyz

);

HRESULT GetVelocity3f(
A3DVAL *fvx, A3DVAL *fvy, A3DVAL *fvz

);

HRESULT GetVelocity3fv(
A3DVAL *fvxyz

);

��
��	�	
��
fvx, fvy, fvz Three A3DVALs for the velocity vector of the source.

fvxyz An array of three A3DVALs for the velocity vector of the source.

 	��
��4���	��

S_OK

�	��
������

IA3dListener::SetVelocity sets the velocity vector of the listener. The speed of the
listener is determined from the length of this vector, and the direction of its motion from
the direction of the vector. This information is used to compute Doppler shift.
The velocity vector is transformed by the listener matrix if IA3dGeom2::BindListener
was used, otherwise it is in absolute world coordinates.

&		������

None.

�

�0��

"��� 	.	
,�"��	
���	�
A3D 3.0 reverb presets and custom reverbs take the form of IA3dReverb objects. These objects
are created using IA3d5::NewReverb, then modified using their member functions (such as
IA3dReverb::SetReverbPreset). Finally, reverb is enabled by binding a reverb to the current
environment via the IA3d5::BindReverb call.

IA3dReverb objects can be bind and unbound as desired. To stop all reverb, bind NULL. To
replace the current reverb with a new one, either modify the current bound reverb object or bind
a new IA3dReverb object. There is no limit to the number of reverb objects that can exist at any
one time, but only one reverb can be bound at any time. In the future, it may be possibly to bind
multiple reverbs.

� �

� � �0��

"��� 	.	
,33��� 	��
Increments the IA3dReverb reference count.

�
�����	�

ULONG AddRef(
void

);

��
��	�	
��
None.

 	��
��4���	��
Returns the new reference count.

�	��
������

When going through a COM method such as QueryInterface or NewReverb to get an
interface pointer to a component, the reference count of the component is automatically
incremented. The reference count is used to let the component know when nothing is
accessing it anymore and that it can delete itself from memory.
Whenever an interface pointer is assigned to another interface pointer, the AddRef
method should be called to let the component know that two pointers are using the same
interface. Now when the Release method is called, the component won’t delete itself
since it has been told something else is still using it. Consider the following example:

hr = pRoot->QueryInterface(IID_IBox, (void **)&pBox1);
if (SUCCEEDED(hr))
{

pBox1->DrawIt();
pBox2 = pBox1;
pBox2->AddRef();
pBox1->Release();

}

While pBox1 is now invalid because it has been released, pBox2 remains intact and can
still be used.
All A3D 3.0 interfaces inherit the COM IUnknown interface that contains the methods
AddRef, QueryInterface, and Release. “Inside COM” by Microsoft Press is an excellent
resource for detailed information on COM.

�

�0!�

&		������

IA3d5::QueryInterface
IA3d5::Release

� �

� � �0$�

"��� 	.	
,338�	
�"��	
���	�
Returns an interface pointer for a supported interface.

�
�����	�

HRESULT QueryInterface(
REFIID iid,
LPVOID FAR *ppInterface

);

��
��	�	
��
iid Interface identifier. Specify only IID_IA3dReverb.

ppInterface Address of a pointer to an interface. The function fills out the pointer.

 	��
��4���	��
S_OK
E_NOINTERFACE

�	��
������

All A3D interfaces inherit the IUnknown interface that contains a method called
QueryInterface. This method is used to let the application know what other interfaces a
particular interface supports, and to return a pointer to a requested interface if it is
supported. The different A3D interfaces support different interfaces.
The IA3dReverb interface doesn’t support any other interfaces, so the only valid value
for iid is IID_IA3dReverb, which will return another Reverb interface pointer and
increment the reference count.
Calling any QueryInterface and asking for an interface that isn’t supported will return the
error E_NOINTERFACE. The address of the pointer passed in to the method will be left
at the value it was set to by the calling method, so it may not be NULL. For this reason,
it is essential to check the return value of this method.

&		������

IA3d5::AddRef
IA3d5::Release

�

�0%�

"��� 	.	
,33 	�	��	�
Decrements the IA3dReverb reference count.

�
�����	�

ULONG Release(
void

);

��
��	�	
��
None.

 	��
��4���	��

Returns the new reference count.

�	��
������

When going through a COM method such as QueryInterface or NewReverb to get an
interface pointer to a component, the reference count of the component is automatically
incremented.
The reference count is used to let the component know when nothing is accessing it
anymore and that it can delete itself from memory.
Calling IA3dReverb::Release decrements the reference count for the IA3dReverb
interface, and if it is 0, the object deletes itself from memory. Typically, an application
will not manually increment the reference count of an IA3dReverb interface, so
IA3dReverb::Release will delete the Reverb.
All A3D 2.0 interfaces inherit the COM IUnknown interface that contains the methods
AddRef, QueryInterface, and Release. “Inside COM” by Microsoft Press is an excellent
resource for detailed information on COM.
Note: Though the preferred way of freeing reverb objects (and all A3d objects) is to call
the COM Release method, the IA3d5::Shutdown function will actually release and free
memory for all reverbs objects created.

&		������

IA3d5::AddRef
IA3d5::QueryInterface

� �

� � �0'�

"��� 	.	
,33&	�9�	�����
�	
��	��
Sets or gets all properties of a custom reverb, or modifies all preset properties at once.

�
�����	�

HRESULT Set/GetAllProperties(
A3DREVERB_PROPERTIES *pAllProperties

);

��
��	�	
��
pAllProperties A pointer to an A3DREVERB_PROPERTIES structure which contains

all the property values that describe this reverb.

 	��
��4���	��
S_OK
A3DERROR_INVALID_ARGUMENT

�	��
������

The SetAllProperties function takes a pointer to an A3DREVERB_PROPERTIES
structure, which contains the property values that describe this reverb. The structure
should be filled out with the appropriate property values before calling this function. If
any of the values in the structure are out of range,
A3DERROR_INVALID_ARGUMENT is returned.
GetAllProperties take a pointer to an A3DREVERB_PROPERTIES structure and fills it
with the current values. Before calling this function, the dwSize field must be filled in
with the proper size of the structure you are requesting values for (see below), but all
other fields are ignored and overwritten.

&		������

A3DREVERB_PROPERTIES
A3DREVERB_CUSTOM
A3DREVERB_PRESET

�

�0(�

"��� 	.	
,33&	�9�	��
	�	��������
Sets or gets the damping factor for this reverb object’s active preset.

�
�����	�

HRESULT SetPresetDamping(
A3DVAL fDamping,

);

HRESULT GetPresetDamping(

A3DVAL *pfDamping,
);

��
��	�	
��
fDamping Reverberation decay time

pfDamping Pointer to be filled in with the reverberation decay time

 	��
��4���	��
S_OK
A3DERROR_INVALID_ARGUMENT

�	��
������

The SetPresetDamping function sets the damping factor for this reverb object’s active
preset.
The Damping parameter controls how fast high frequencies decay relative to middle and
low frequencies. This value can range from 0.1f to 100.0f. Lower values shorten the high
frequency decay time, resulting in a muffled effect. Higher values lengthen the high
frequency decay value, resulting in a brighter effect. The default value depends on the
preset chosen; use GetPresetDamping if you wish to make modifications based on a
known value.
The new value will become active after the next call to IA3d5::Flush.
Note: This function only works when a reverb preset is currently active. No change will
be heard when a custom reverb is in use.

&		������

None.

� �

� � �0)�

"��� 	.	
,33&	�9�	��
	�	��	������	�
Sets or gets the decay time for this reverb object’s active preset.

�
�����	�

HRESULT SetPresetDecayTime(
A3DVAL fDecayTime,

);

HRESULT GetPresetDecayTime(

A3DVAL *pfDecayTime,
);

��
��	�	
��
fDecayTime Reverberation decay time

pfDecayTime Pointer to be filled in with the reverberation decay time

 	��
��4���	��
S_OK
A3DERROR_INVALID_ARGUMENT

�	��
������

The SetPresetDecayTime function sets the decay time for this reverb object.
The fDecayTime parameter controls the number of seconds it takes for the reverb to
diminish by 60db, and is used to simulate the acoustical properties of a room. Longer
times produce a very “live” room, with lots of reflections, while shorter times will make
for a more “dead” room, down to where there is little noticeable reverb effect. This value
is in seconds, and can range 0.1f to 100.0f. The default value depends on the preset
chosen; use GetPresetDecayTime if you wish to make modifications based on a known
value.
The decay time value is the number of seconds it takes for the reverb to diminish by
60db. Longer times simulate a very “live” room, while shorter times
The new value will become active after the next call to IA3d5::Flush.
Note: This function only works when a reverb preset is currently active. No change will
be heard when a custom reverb is in use.

&		������

None.

�

��0�

"��� 	.	
,33&	�9�	��
	�	�4����	�
 Sets or gets the volume for this reverb object’s active preset.

�
�����	�

HRESULT SetPresetVolume(
A3DVAL Volume,

);

HRESULT GetPresetVolume(

A3DVAL *pVolume,
);

��
��	�	
��
A3DVAL Volume Reverberation decay time

 	��
��4���	��
S_OK
A3DERROR_INVALID_ARGUMENT

�	��
������

The SetPresetVolume function sets the volume for this reverb object, relative to the
direct path.
The Volume parameter controls the volume of the entire reverb effect, leaving intact the
relative effect for individual sources. This value can range from 0.0f (no reverb effect) to
1.0f (maximum reverb effect). The default value depends on the preset chosen; use
GetPresetVolume if you wish to make modifications based on a known value.
The new value will become active after the next call to IA3d5::Flush.
Note: This function only works when a reverb preset is currently active. No change will
be heard when a custom reverb is in use.

&		������

None.

� �

� � ����

"��� 	.	
,33&	�9�	� 	.	
,�
	�	��
Selects a reverb preset for this reverb object, or returns the current preset.

�
�����	�

HRESULT SetReverbPreset(
DWORD preset

);

HRESULT GetReverbPreset(

DWORD *pPreset
);

��
��	�	
��
Preset - (These are directly mapped to EAX environment types):

A3DREVERB_PRESET_GENERIC - The default when the reverb is created
A3DREVERB_PRESET_PADDEDCELL
A3DREVERB_PRESET_ROOM
A3DREVERB_PRESET_BATHROOM
A3DREVERB_PRESET_LIVINGROOM
A3DREVERB_PRESET_STONEROOM
A3DREVERB_PRESET_AUDITORIUM
A3DREVERB_PRESET_CONCERTHALL
A3DREVERB_PRESET_CAVE
A3DREVERB_PRESET_ARENA
A3DREVERB_PRESET_HANGAR
A3DREVERB_PRESET_CARPETEDHALLWAY
A3DREVERB_PRESET_HALLWAY
A3DREVERB_PRESET_STONECORRIDOR
A3DREVERB_PRESET_ALLEY
A3DREVERB_PRESET_FOREST
A3DREVERB_PRESET_CITY
A3DREVERB_PRESET_MOUNTAINS
A3DREVERB_PRESET_QUARRY
A3DREVERB_PRESET_PLAIN
A3DREVERB_PRESET_PARKINGLOT
A3DREVERB_PRESET_SEWERPIPE
A3DREVERB_PRESET_UNDERWATER
A3DREVERB_PRESET_DRUGGED

�

����

A3DREVERB_PRESET_DIZZY
A3DREVERB_PRESET_PSYCHOTIC

 	��
��4���	��
S_OK

�	��
������

The SetReverbPreset function selects a reverb preset. The selected preset can be
modified with the advanced property functions (defined below). If the reverb preset is
changed after having been modified, all modifications are lost, and the new preset is
immediately enabled. An A3DReverb object that is currently bound to the world using
IA3d5::BindReverb will continue to be bound even when the reverb preset is changed
or the properties are changed. Any changes made to a bound A3DRreverb object will be
applied to the world when the next IA3d5::Flush call is made. If a bound A3DReverb
object is released, it will effectively be unbound right before it is deleted.
GetReverbPreset takes a pointer to a DWORD that will be filled with the current preset.
Note that switching between presets, or changing any reverb properties, will take place at
the next call to IA3d5::Flush, and will happen smoothly. It’s also important to
remember that while WAV and MP3 files can have reverb effects applied to them, AC-3
tracks cannot.

&		������

None.

� �

� � ����

��� #4# 5>�<&�;*�

*	�,	
��
DWORD dwSize Size of the structure. This must be set before passes a

blank structure into any other API calls.

LONG lRoom Controls the level of the room effect. This value can be
between -10000 (minimum room effect) and 0
(maximum room effect).

LONG lRoomHF Controls the attenuation at high frequencies relative to
the intensity at low frequencies. This value can be
between -10000 (no attenuation) and 0 (max
attenuation).

FLOAT flRoomRolloffFactor Controls the rolloff of room effect intensity vs. distance.
This value can be between 0.0f and 10.0f. At 0.0f,
reverberation intensity does not depend on source-
listener distance. As this value is increased, the reverb
decays faster with respect to the distance from the
source.

FLOAT flDecayTime Controls the reverberation decay time at low
frequencies. This value is in seconds, and can range
from 0.1f to 20.0f.

FLOAT flDecayHFRatio Controls the ratio of high-frequency decay time relative
to low-frequency decay time. This value can be between
0.1f (high frequencies decay faster than low
frequencies) and 2.0f (high and low frequencies decay at
the same rate).

LONG lReflections Controls the intensity level of early reflections (relative
to Room value). This value can be between -10000 and
1000. At –10000 no early reflections will be heard,
increasing this value results in an increase in the volume
of early reflections relative to late reflections.

FLOAT flReflectionsDelay Controls the delay time of the first reflection (relative to
the direct path). This value is in seconds, and can range
from 0.0f to 0.3f.

�

��!�

LONG lReverb Controls the intensity of late reverberation (relative to
Room value). This value can be between -10000 (no
reverberation) and 2000 (maximum reverberation).

FLOAT flReverbDelay Defines the time limit between the early reflections and
the late reverberation (relative to the time of the first
reflection). This value is in seconds, and can range from
0.0f to 0.1f.

FLOAT flDiffusion Controls the modal diffusion in the late reverberation
decay. This value is a percentage, and can range from
0.0f (minimum diffusion) to 1.0 (maximum diffusion).

FLOAT flDensity Controls the echo density in the late reverberation
decay. This value is a percentage, and can range from
0.0f (minimum density) to 1.0 (maximum density).

FLOAT flHFReference Controls the reference high frequency. This value is in
kHz, and can range from 20.0f to 20000.0f. All low-pass
effects are specified as high-frequency attenuation in dB
relative to low frequencies, taking the same reference
high frequency for all effects.

�

� �

� � ��$�

��� #4# 5>� #&#��

�	��
������

The A3DREVERB_PRESET structure specifies a predefined reverb with a couple of
tweak values, described below.

*	�,	
�� �
DWORD dwSize Size of the structure. This must be set before passes a

blank structure into any other API calls.

DWORD dwEnvPreset Specify an A3D_REVERB_PRESET value.

A3DVAL fVolume Overall volume of the reverb - any value between 0.0
(silence) and 1.0 (full effect).

A3DVAL fDecayTime Seconds in decay (0 – 100.f)

A3DVAL fDamping Damp value from (0 – 1)

�

��%�

��� #4# 5>� ;�# �"#&�
The A3DREVERB_PROPERTIES structure is, in fact, a union. As preset reverbs
contain different properties than custom reverbs, it is necessary to fill out the proper
member structure before making these calls, else an error is returned. The dwType field
must be properly specified, along with the dwSize fields of both the member structure
and the A3DREVERB_PROPERTIES structure itself.

*����������
	�	���

The Set/GetReverbProperties functions are available for presets merely for the
convenience of being able to set all of the preset values at once. These values are
identical to the SetPreset functions described elsewhere.
To use SetReverbProperties with a preset, specify a dwType of
A3DREVERB_TYPE_PRESET, fill in the A3DREVERB_PRESET member structure
with the same values as you would use when calling the individual functions, and call
this function. The new values will become active after the next call to IA3d5::Flush.
To use GetReverbProperties with a preset, specify a dwType of
A3DREVERB_TYPE_PRESET and call this function. The A3DREVERB_PRESET
member structure will be filled in with the values that are currently in use. An error will
be returned if the current reverb is not using a preset.

�
	�������������
	.	
,��

The SetReverbProperties function allows the creation of custom reverbs, with all
properties available for tweaking.
To use SetReverbProperties to create a custom preset, specify a dwType of
A3DREVERB_TYPE_CUSTOM, completely fill in the A3DREVERB_CUSTOM
member structure and call this function. The new values will become active after the next
call to IA3d5::Flush.
To use GetReverbProperties with a custom reverb, specify a dwType of
A3DREVERB_TYPE_CUSTOM and call this function. The A3DREVERB_CUSTOM
member structure will be filled in with the values that are currently in use. An error will
be returned if the current reverb is not using a custom reverb.

*	�,	
��
DWORD dwSize Size of the A3DREVERB_PROPERTIES structure.

This must be set before this structure is passed into a
function.

� �

� � ��'�

DWORD dwType Either A3DREVERB_TYPE_PRESET or
A3DREVERB_TYPE_CUSTOM, depending on which
member structure of the union is being used.

The union:

A3DREVERB_PRESET Preset Struct with information about the current reverb
preset.

Or:

A3DREVERB_CUSTOM Custom Struct describing the current user-defined
reverb.

&		������
A3DREVERB_CUSTOM
A3DREVERB_PRESET

�

��(�

"���&��
�	��"��	
���	�
Sources are objects that make sound. A3D lets an application create as many sources as it needs
and position them in 3D space. Each source is rendered from the perspective of the listener.

The IA3dSource2 interface contains the methods used to manipulate a source. The application
obtains IA3dSource2 automatically when a new source is created. Sources are created by
calling the NewSource method in IA3d5. A pointer to the interface is returned in a parameter to
the method, as shown in this example:

/* IA3d5 already exists.... */

pA3d5->NewSource(A3DSOURCE_TYPE3D, &pSource_0);

In this case, pSource_0 is the pointer to the IA3dSource2 interface. (Since this is only an
example, the return codes are ignored.)

There are two types of sources: 3D and native. 3D sources can be positioned in the world and
interact with any geometry being rendered, while native sources can be panned left and right and
are not affected by distance or geometry.

Before a source can make any sound, it needs wave data to play back. There are several ways to
get the wave data attached to the source but the simplest is to use
IA3dSource2::LoadWaveFile:

pSource->LoadWaveFile("my_waves/heli.wav");

With wave data loaded, the source is ready to be played. The following code plays the source,
moves it from one position to another, and then stops it:

pSource->Play(A3D_LOOPED);

for (fX = -10.0f; fX < 10; fX += 0.01f)
pSource->SetPosition(fX, 0.0f, -5.0f);

pSource->Stop();

As with the listener, the source properties can be manipulated by a transformation matrix. This
topic is discussed in “Transformation Matrix” on page 17. More information can also be found in
Chapter 6: “Geometry Engine Reference Pages”.

� �

� � ��)�

"���&��
�	�33��� 	��
Increments the IA3dSource2 reference count.

�
�����	�

ULONG AddRef(
void

);

��
��	�	
��
None.

 	��
��4���	��

Returns the new reference count.

�	��
������

When going through a COM method such as QueryInterface or NewSource to get an
interface pointer to a component, the reference count of the component is automatically
incremented. The reference count is used to let the component know when nothing is
accessing it anymore and that it can delete itself from memory.
Whenever an interface pointer is assigned to another interface pointer, the AddRef
method should be called to let the component know that two pointers are using the same
interface. Now when the Release method is called, the component won't delete itself
since it has been told something else is still using it. Consider the following example:

hr = pRoot->QueryInterface(IID_IBox, (void **)&pBox1);
if (SUCCEEDED(hr))
{

pBox1->DrawIt();
pBox2 = pBox1;
pBox2->AddRef();
pBox1->Release();

}

While pBox1 is now invalid because it has been released, pBox2 remains intact and can
still be used.
All A3D 3.0 interfaces inherit the COM IUnknown interface that contains the methods
AddRef, QueryInterface, and Release. Inside COM by Microsoft Press is an excellent
resource for detailed information on COM.

�

��0�

&		������

IA3dSource2::Release
IA3dSource2::QueryInterface

� �

� � ����

"���&��
�	�33�������	����������
Allocates data for a sound source. You must set the format of the sound source before
calling this function.

�
�����	�

HRESULT AllocateAudioData(
INT nSize

);

��
��	�	
��
nSize Size of the memory data in bytes.

 	��
��4���	��

S_OK
E_INVALIDARG if nSize < 1
A3DERROR_NEEDS_FORMAT_INFORMATION
A3DERROR_FAILED_CREATE_SOUNDBUFFER

�	��
������

IA3dSource2::AllocateAudioData allocates memory for the source wave data and
attempts to allocate the resources necessary to handle playing the source. Following this
call, IA3dSource2::Lock should be used to lock the entire wave data space for writing
and the wave data copied into the source using memcopy.
This method may fail for an unmanaged source if insufficient resources are available to
support the requested format. For this reason it is essential to check the return value
using the standard COM SUCCEEDED macro.
IA3dSource2::FreeAudioData is used to free the memory and resources allocated by
IA3dSource2::AllocateAudioData. IA3dSource2::Release automatically frees all the
resources assigned to the source.

&		������

IA3dSource2::Set/GetAudioFormat
IA3dSource2::Lock
IA3dSource2::Unlock

�

����

"���&��
�	�33��	�
����#.	����
Clears all wave events for a source.

�
�����	�

HRESULT ClearPlayEvents(
void

);

��
��	�	
��

None.

 	��
��4���	��

S_OK

�	��
������

This method clears all the playback position wave events set using
IA3dSource2::SetPlayEvent.

&		������

IA3dSource2::SetPlayEvent

� �

� � ����

"���&��
�	�33/
		����������
Releases allocated data for a sound source.

�
�����	�

HRESULT FreeAudioData(
void

);

��
��	�	
��

None.

 	��
��4���	��

S_OK
A3DERROR_NO_WAVE_DATA

�	��
������

IA3dSource2::LoadFile and IA3dSource2::AllocateAudioData both allocate
resources to play back the wave data of the source. IA3dSource2::FreeAudioData
releases those resources and leaves the source effectively empty.
The resources that are freed are the memory used to store the wave data and the playback
channel in the audio renderer.

&		������

IA3dSource2::AllocateAudioData
IA3dSource2::LoadFile

�

��!�

"���&��
�	�33�	�����,������
Gets the calculated audibility of the source.

�
�����	�

HRESULT GetAudibility(
LPA3DVAL fAudibility

);

��
��	�	
��
fAudibility Pointer to an A3DVAL which will be filled out by the method.

 	��
��4���	��

S_OK

�	��
������

A3D internally computes an audibility value for each source. This audibility is a function
of gain and any frequency dependent attenuation caused by distance, occlusions, and any
explicit settings from the application - the higher the value, the more audible the source.
IA3dSource2::GetAudibility is used to return that value to the application where it can
be used to make decisions about, for example, whether to continue playing the source.
The value is one frame old, as audibility can only be computed after all processing on the
source has been completed inside the call to IA3d5::Flush.
Valid returned values for fAudibility are from 0.0 to 1.0 inclusive, 1.0 being fully
occluded. If the source is not playing its audibility will be 0.0.

&		������

IA3d5::Flush
IA3dSource2::Set/GetGain
IA3dSource2::Set/GetPanValues
IA3dSource2::GetOcclusionFactor

� �

� � ��$�

"���&��
�	�33�	�;��������/����
�
Gets the occlusion factor of the source.

�
�����	�

HRESULT GetOcclusionFactor(
LPA3DVAL fOcclusionFactor

);

��
��	�	
��
fOcclusionFactor Pointer to an A3DVAL which will be filled out by the method.

 	��
��4���	��

S_OK
A3DERROR_SOURCE_IN_NATIVE_MODE

�	��
������

When processing geometry, A3D computes a value that specifies how much a source is
occluded by surfaces. This isn't a gain value, as it doesn't take surface material properties
into account, but simply a value that says how much of the source is blocked by a
surface. IA3dSource2::GetOcclusionFactor is used to pass that value back to the
application where it can be used to make decisions about what to do with the source. For
example, if a source is fully occluded, its priority could be reduced because most likely
the object making the sound isn't visible.
Valid returned values for fOcclusionFactor are from 0.0 to 1.0 inclusive, 1.0 being fully
occluded. If the source is not playing its occlusion factor will be 0.0.

&		������

None.

�

��%�

"���&��
�	�33�	�&������
Gets the activity status of the source.

�
�����	�

HRESULT GetStatus(
LPDWORD dwStatus

);

��
��	�	
��
dwStatus Pointer to a DWORD, filled out by the method.

 	��
��4���	��

S_OK

�	��
������

This method returns the playback status of a source. The status specifies whether the
source is playing, stopped, or has been requested for playing but is still waiting for
IA3d5::Flush to be called. dwStatus is a bitmask of the following values:
A3DSTATUS_PLAYING, A3DSTATUS_LOOPING,
A3DSTATUS_WAITING_FOR_FLUSH. If it is 0 then the source is stopped.

&		������

IA3d5::Flush
IA3dSource2::Play
IA3dSource2::Stop

� �

� � ��'�

"���&��
�	�33�	���	�
Gets the type of the source.

�
�����	�

HRESULT GetType(
LPDWORD dwType

);

��
��	�	
��
dwType Pointer to a DWORD which will be filled out by the method.

 	��
��4���	��

S_OK

�	��
������

When a source is created with IA3d5::NewSource, a type is defined for the source.
IA3dSource2::GetType returns the value that was passed in when the source was
created, or the type that was derived from the parent source when a duplicate was
created.
dwType is filled out by the method and is a bitmask representing all the flags that were
set in IA3d5::NewSource.
Note that the type of a source can never be changed. It can only be set when the source is
created. It is possible to change the playback mode of some sources. For example, a
resource managed A3D source can be played back as stereo even though it is of type
A3D. This doesn't change its type — it will still be reported as an A3D source.

&		������

IA3d5::NewSource
IA3dSource2::Set/GetRenderMode

�

��(�

"���&��
�	�33�	������&�?	��
Gets the size of the audio data.

�
�����	�

HRESULT GetAudioSize(
void

);

��
��	�	
��

None.

 	��
��4���	��

The size of the Allocated Audio Buffer in bytes. 0 if no data is allocated.

�	��
������

This method is used to find out how much memory is allocated to store the audio data for
a source. It returns the number of bytes allocated, and may be 0 if there is no audio data
associated with the source.

&		������

IA3dSource2::AllocateAudioData
IA3dSource2::FreeAudioData

� �

� � ��)�

"���&��
�	�332�����.	�����
Loads audio data from memory into the source.

�
�����	�

HRESULT LoadWaveData(
LPVOID pvWaveData
DWORD dwSize

);

��
��	�	
��
pvWaveData Pointer to the audio data in memory.

dwSize Size of the data.

 	��
��4���	��

S_OK
E_POINTER
E_INVALIDARG

�	��
������

This method is used to load audio data from memory into a source. The data pointed to
by pvWaveData must also contain the wave file header describing the format of the data
to be loaded. It is equivalent to calling IA3dSource2::SetFormat and
IA3dSource2::AllocateAudioData.
This method may fail for an unmanaged source if insufficient resources are available to
support the requested format. For this reason it is essential to check the return value
using the standard COM SUCCEEDED macro.
The memory allocated by this function is freed by IA3dSource2::FreeAudioData.

&		������

IA3dSource2::LoadFile
IA3dSource2::Set/GetAudioFormat
IA3dSource2::AllocateAudioData
IA3dSource2::FreeAudioData

�

��0�

"���&��
�	�332���/��	��
Loads audio data from a file.

�
�����	�

HRESULT LoadFile(
char *szFileName,
DWORD dwFormat

);

��
��	�	
��
szFileName Path and file name of wave data file to load.

dwFormat Specifies how to load this file.

A3DSOURCE_FORMAT_AUTO

A3DSOURCE_FORMAT_WAVE

A3DSOURCE_FORMAT_MP3

A3DSOURCE_FORMAT_AC3

A3DSOURCE_STREAMING

 	��
��4���	��

S_OK
A3DERROR_FAILED_FILE_OPEN
A3DERROR_UNRECOGNIZED_FORMAT
A3DERROR_FAILED_ALLOCATE_WAVEDATA
A3DERROR_FAILED_LOCK_BUFFER
A3DERROR_FAILED_UNLOCK_BUFFER

�	��
������

IA3dSource2::LoadFile is a convenience function which does all the I/O necessary to
open an audio file and read it into memory. It also sets the source up to read the format
of the wave data and store the samples in the source.

&		������

IA3dSource2::LoadWaveData
IA3dSource2::AllocateAudioData

� �

� � ����

"���&��
�	�332����
Allows data to be written to a buffer.

�
�����	�

HRESULT Lock(
DWORD dwWriteCursor,
DWORD dwNumBytes,
LPVOID *pvAudioPtr1,
LPDWORD dwAudioBytes1,
LPVOID *pvAudioPtr2,
LPDWORD dwAudioBytes2,
DWORD dwFlags

);

��
��	�	
��
dwWriteCursor Offset from the start of the buffer.

dwNumBytes Number of bytes to lock.

pvAudioPtr1 Pointer to first block of available data.

dwAudioBytes1 Number of bytes in first block.

pvAudioptr2 Pointer to second block of available data.

dwAudioBytes2 Number of bytes in second block.

dwFlags Specifies the lock mode. Select one of:

A3D_FROMWRITECURSOR Uses current cursor position and ignores
dwWriteCursor.

A3D_ENTIREBUFFER Ignores dwWriteCursor and
dwNumBytes — locks the whole buffer.

 	��
��4���	��

S_OK
A3DERROR_NO_WAVE_DATA
A3DERROR_FAILED_LOCK_BUFFER

�

����

�	��
������

Use IA3dSource2::Lock to find a portion of the wave data in a sound source that can be
safely written to — a block of data that is not currently being played. The wave data in a
sound source is stored in a circular buffer so, depending on how close to the end of the
buffer the write cursor is and how much data has been requested, a second pointer may
be returned. Use IA3dSource2::Unlock after you are finished manipulating the data.

&		������

IA3dSource2::Unlock
IA3dSource2::LoadFile
IA3dSource2::AllocateAudioData

� �

� � ����

"���&��
�	�33�����
Starts a sound source playing.

�
�����	�

HRESULT Play(
INT nMode

);

��
��	�	
��
mode A3D_LOOPED or A3D_SINGLE. Determines whether the sound is

played in a continuous loop or only once.

 	��
��4���	��

S_OK
A3DERROR_NO_WAVE_DATA
A3DERROR_UNKNOWN_PLAYMODE
A3DERROR_FAILED_PLAY

�	��
������

IA3dSource2::Play starts a sound source playing either once only or in looping mode.
This doesn't start it playing immediately as all modifications to a source (other than
changing the wave data) are deferred until IA3d5::Flush is called. This means if
IA3d5::Flush is never called, no sources will ever be played.
Calling this method is not guaranteed to result in the source actually being played; it just
lets the resource manager know that the application has requested to play this source. If
resources are available, it will be played. If no resources are available, the resource
manager will weigh the importance and audibility of this source against all the others the
application has asked to play and decide at that point whether it should replace a
currently playing source with this one. Resource management and re-allocation is done
approximately every 10 ms, so in the situation where playing a source successfully
displaces another source, there may be a small lag before the new source starts playing.
Generally this latency will be much less than the length of a video frame and shouldn't be
noticeable.

�

��!�

&		������

IA3dSource2::Stop
IA3d5::Flush
IA3dSource2::Set/GetPriority
IA3d5::Set/GetRMPriorityBias

� �

� � ��$�

"���&��
�	�338�	
�"��	
���	�
Returns an interface pointer for a supported interface.

�
�����	�

HRESULT QueryInterface(
REFIID iid,
LPVOID FAR *pInterface

);

��
��	�	
��
iid Interface identifier. Specify only IID_IA3dSource2.

pInterface Address of a pointer to an interface which will be filled out by the
method.

 	��
��4���	��

S_OK
E_NOINTERFACE

�	��
������

All A3D interfaces inherit the IUnknown interface that contains a method called Query-
Interface. This method is used to let the application know what other interfaces a
particular interface supports, and to return a pointer to a requested interface if it is
supported. The different A3D interfaces support different interfaces.
The IA3dSource2 interface doesn't support any other interfaces, so the only valid value
for iid is IID_IA3dSource2, which will return another source interface pointer and
increment the reference count.
Calling any QueryInterface and asking for an interface that isn't supported will return
the error E_NOINTERFACE. The address of the pointer passed in to the method will be
left at the value it was set to by the calling method, so it may not be NULL. For this
reason, it is essential to check the return value of this method.

&		������

IA3dSource2::AddRef
IA3dSource2::Release

�

��%�

"���&��
�	�33 	�	��	�
Decrements the IA3dSource2 reference count.

�
�����	�

ULONG Release(
void

);

��
��	�	
��
None.

 	��
��4���	��

Returns the new reference count.

�	��
������

When going through a COM method such as QueryInterface or NewSource to get an
interface pointer to a component, the reference count of the component is automatically
incremented. The reference count is used to let the component know when nothing is
accessing it anymore and that it can delete itself from memory.
Calling IA3dSource2::Release decrements the reference count for the IA3dSource2
interface, and if it is 0, the object deletes itself from memory. Typically, an application
will not manually increment the reference count of an IA3dSource2 interface, so
IA3dSource2::Release will delete the source.
All A3D 3.0 interfaces inherit the COM IUnknown interface that contains the methods
AddRef, QueryInterface, and Release. Inside COM by Microsoft Press is an excellent
resource for detailed information on COM.

&		������

IA3d5::NewSource
IA3d5::DuplicateSource
IA3dSource2::AddRef
IA3dSource2::QueryInterface.

� �

� � ��'�

"���&��
�	�33 	6����
Rewinds a sound source back to the beginning of the wave data.

�
�����	�

HRESULT Rewind(
void

);

��
��	�	
��

None.

 	��
��4���	��

S_OK

�	��
������

Rewinds the playback cursor in a sound source to the beginning of the wave data. It is
equivalent to calling IA3dSource2::SetPlayPosition(0). This does not trigger the source
to start playing — if it is playing it continues to play and if it is stopped it remains
stopped.

&		������

IA3dSource2::Set/GetPlayPosition

�

��(�

"���&��
�	�33&	�9�	������/�
�����
Sets and gets the format of the wave information.

�
�����	�

HRESULT SetAudioFormat(
LPVOID pWaveFormat

);

HRESULT GetAudioFormat(
LPVOID pWaveFormat

);

��
��	�	
��
pWaveFormat Pointer to a WAVEFORMATEX structure, cast to a void pointer.

 	��
��4���	��

S_OK
E_POINTER
E_OUTOFMEMORY
A3DERROR_CANNOT_CHANGE_FORMAT_FOR_ALLOCATED_BUFFER
A3DERROR_NO_WAVE_DATA (GetAudioFormat only)

�	��
������

IA3dSource2::SetAudioFormat is used to specify the type of audio data which will be
loaded into the source with a subsequent call to IA3dSource2::AllocateAudioData. It
must be called before IA3dSource2::AllocateAudioData can be used.
On Win32 platforms, the parameter pWaveFormat is a pointer to a WAVEFORMATEX
structure, cast to a void pointer. When using IA3dSource2::SetAudioFormat, this
structure should be allocated and filled out by the application. The source object will
create its own structure internally and copy the data from pWaveFornat into it so the
application can free its copy. The data contained in the structure specifies properties such
as the sample rate, resolution and number of channels in the wave data to be loaded. See
the Win32 SDK reference for details on the WAVEFORMATEX structure.
Currently A3D only supports PCM data where
PWaveFormat->wFormatTag = WAVE_FORMAT_PCM

The field cbSize in the WAVEFORMATEX structure is ignored. Similarly
GetAudioFormat only copies memory equal to sizeof(WAVEFORMATEX) and not
sizeof(WAVEFORMATEX) + pWaveFormat->cbSize.

� �

� � ��)�

The format of a source can't be changed after any wave data has been copied into it. To
change the format, the wave data must be freed using IA3dSource2::FreeAudioData.

&		������
IA3dSource2::AllocateAudioData

�

�!0�

"���&��
�	�33&	�9�	����	�
Sets the directionality of a source cone.

�
�����	�

HRESULT SetCone(
A3DVAL fInnerAngle,
A3DVAL fOuterAngle,
A3DVAL fGain

);

HRESULT GetCone(
A3DVAL *fInnerAngle,
A3DVAL *fOuterAngle,
A3DVAL *fGain

);

��
��	�	
��
fAngle1 Inner cone angle in degrees.

fAngle2 Outer cone angle in degrees.

fGain Gain at fOuterAngle.

 	��
��4���	��

S_OK

�	��
������

IA3dSource2::SetCone is used to specify the cone angles for directional sound sources.
The two angles, fInnerAngle and fOuterAngle define the size of the cone. Between 0
degrees and fInnerAngle, the source will be at the level specified in any call to
IA3dSource2::SetGain (plus any effect caused by distance or occlusions). Between
fInnerAngle and fOuterAngle the source gain is multiplied by the cone gain calculated by
interpolating between 1.0 and fGain according to the bearing of the listener from the
source. From fOuterAngle to 180 degrees, the source gain is multiplied by fGain.
Enabling a sound cone for a source results in a small performance overhead as some
extra calculations need to be performed on the source. Setting either fOuterAngle to 0 or
fGain to 1 disables cone processing and the source is treated as omnidirectional.
Cones only affect direct path gain and are ignored for reflections.

&		������

� �

� � �!��

IA3dSource2::Set/GetGain

�

�!��

"���&��
�	�33&	�9�	��������	*��	�&���	�
Changes the distance attenuation curve for a source.

�
�����	�

HRESULT SetDistanceModelScale(
A3DVAL fScale

);

HRESULT GetDistanceModelScale(
LPA3DVAL pfScale

);

��
��	�	
��
fScale Scale factor for the distance model. Valid values are 0.0 to infinity.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

Source audibility is reduced with distance from the listener. Two factors affect the rate
of that attenuation — the minimum distance set for the source, and the scaling applied to
the curve beyond the minimum distance. IA3dSource2::SetDistanceModelScale affects
the latter.
By default, sources are attenuated by 6 dB for each doubling in distance. If the minimum
distance is 1 m then at 2 m from the listener the source will be at -6 dB, at 4 m it will be
at -12 dB, and at 8 m it will be -18 dB etc. Using this method to modify the curve does
not affect the minimum distance. Instead, for the purpose of gain attenuation, it
recalculates the range from the listener to the source in the following way:

new_range = ((range – min_dist) × scale) + min_dist

This has the effect of flattening or exaggerating the curve but without causing any
discontinuity at the minimum distance. If the unmodified range of a source is within the
minimum distance, distance attenuation is set to 0 and the new range calculation ignored.

&		������

IA3dSource2::Set/GetMinMaxDistance

� �

� � �!��

"���&��
�	�33&	�9�	����	
&���	�
Sets and gets the exaggerated Doppler effect on a source.

�
�����	�

HRESULT SetDopplerScale(
A3DVAL fDopplerScale

);

HRESULT GetDopplerScale(
LPA3DVAL pfDopplerScale

);

��
��	�	
��
fDopplerScale Multiplier for the Doppler effect.

 	��
��4���	��

None.

�	��
������

Doppler shift is the effect that the motion of a source and listener has on the perceived
frequency of the sound made by the source. Sounds moving towards a listener are raised
in pitch, and those moving away lowered in pitch. The amount of pitch change is
proportional to the speed of the source and listener along the line that joins them. Speed
along that line is computed from the velocity vectors of the source and listener.
Doppler shift on a source can be exaggerated or reduced using
IA3dSource2::SetDopplerScale. The default is 1.0 (correct Doppler), while 2.0 doubles
the effect and 0.5 reduces it by half. Depending on the original sample rate of the source
there are limits to how much the Doppler effect can be exaggerated, but 0.5 – 2.0 are
reasonable values. If input Doppler scale is less than zero, the Doppler scale is set to
zero.

&		������

IA3d5::Set/GetDopplerScale
IA3dListener::Set/GetVelocity
IA3dSource2::Set/GetVelocity

�

�!!�

"���&��
�	�33&	�9�	�#:�
Sets the tonal equalization of a source.

�
�����	�

HRESULT SetEq(
A3DVAL fHighFreq

);

HRESULT GetEq(
LPA3DVAL fHighFreq

);

��
��	�	
��
fHighFreq Floating point number between 0.0 and 1.0 inclusive (default 1.0).

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

IA3dSource2::SetEq applies an equalization effect to the source. It is similar in effect to
a treble control on a stereo system and is completely independent of distance and gain. It
is low-pass only and doesn't allow high frequencies to be boosted.
If 0.0 < fEq < 1.0, high frequencies are attenuated more as fEq approaches 0.0. The
default setting of 1.0 means there is no additional high frequency attenuation applied to
sources.
This method is useful for simulating different environments. For example, fEq = 0.3
would make the source sound very muffled, as if it is underwater.
This EQ value is applied in addition to any EQ value specified globally for all sources. In
common with all global/local scalars, fEq is multiplied by the global EQ value, which is
set using IA3d5::SetEq.

&		������

IA3d5::SetEq

� �

� � �!$�

"���&��
�	�33&	�9�	������
Sets and gets the playback gain of a source.

�
�����	�

HRESULT SetGain(
A3DVAL fGain,

);

HRESULT GetGain(
LPA3DVAL pfGain,

);

��
��	�	
��
fGain The gain of the source.

 	��
��4���	��

S_OK

�	��
������

fGain is in the range 0.0 to 1.0, where 0.0 is silence and 1.0 (the default) is 0 dB which is
the maximum loudness for a source. Each reduction by half represents a 6 dB
attenuation, so fGain = 0.5 is equivalent to -6dB, fGain = 0.25 equivalent to -12dB,
fGain = 0.125 to -18dB and so on.
Setting the gain of a source sets the maximum possible volume that source will be played
back at. Any attenuation due to distance or occlusions will be in addition to the
attenuation explicitly set by this method.
This method is the local equivalent of IA3d5::SetOutputGain and the gain set here is
multiplied with the global output gain to get the final gain of the source.

&		������

IA3d5::SetOutputGain

�

�!%�

"���&��
�	�33&	�9�	�*��*�7�������	�
Sets and gets the range over which the distance model will be applied to a source.

�
�����	�

HRESULT SetMinMaxDistance(
A3DVAL fMinDistance,
A3DVAL fMaxDistance,
DWORD dwBehavior

);

HRESULT GetMinMaxDistance(
LPA3DVAL pfMinDistance,
LPA3DVAL pfMaxDistance,
LPDWORD pdwBehavior

);

��
��	�	
��
fMinDistance Minimum distance value.

fMaxDistance Maximum distance value.

dwBehavior Behavior at max distance.

 	��
��4���	��

S_OK

�	��
������

This method allows the distance model for the source to be modified. fMinDistance is
the distance from the listener that the source must go beyond before the distance the
model starts to attenuate it. fMaxDistance is the maximum distance from the listener that
the distance model will affect the source — beyond that the source will not be attenuated
any more.
The value of fMinDistance shapes the attenuation curve. Sources are attenuated by 6 dB
with each doubling in distance from the listener, but since this attenuation doesn't begin
until the source has reached fMinDistance, the first reduction of 6 dB occurs at double
the minimum distance. Moving the minimum distance further out reduces the attenuation
rate, making sources audible at greater ranges, and bringing it in increases the attenuation
rate.
The behavior at max distance is determined by the dwBehavior parameter.
A3D_AUDIBLE is the default and causes the source to play at a constant gain once it is

� �

� � �!'�

further than the maximum distance. A3D_MUTE causes the source to mute when it
reaches the max distance.

&		������

IA3dSource2::Set/GetDistanceModelScale
IA3d5::Set/GetDistanceModelScale

�

�!(�

"���&��
�	�33&	�9�	�;
�	��������
Sets and gets the direction of the sound source.

�
�����	�

HRESULT SetOrientation6f(
A3DVAL fDirX, A3DVAL fDirX, A3DVAL fDirX,
A3DVAL fUpX, A3DVAL fUpX, A3DVAL fUpX,

);

HRESULT SetOrientation6fv(
LPA3DVAL fDirXYZUpXYZ

);

HRESULT GetOrientation6f(
A3DVAL *fDirX, A3DVAL *fDirX, A3DVAL *fDirX,
A3DVAL *fUpX, A3DVAL *fUpX, A3DVAL *fUpX,

);

HRESULT GetOrientation6fv(
LPA3DVALfDirXYZUpXYZ

);

��
��	�	
��
fDirX, fDirY, fDirZ, fUpX, fUpY, fUpZ Two perpendicular vectors describing the

orientation of the sound source.

fDirXYZUpXYZ Pointer to an array of 6 floating point numbers.

 	��
��4���	��

S_OK
E_INVALIDARG if NULL pointers are passed in.

�	��
������

IA3dSource2::SetOrientation sets the orientation of the sound source in 3D space,
relative to the current matrix in effect when IA3dGeom2::BindSource is called.
IA3dSource2::GetOrientation returns the position set by
IA3dSource2::SetOrientation.
This only has an effect with directional (cone) sources.

� �

� � �!)�

&		������

IA3dSource2::Set/GetPosition
IA3dSource2::Set/GetVelocity
IA3dGeom2::BindSource

�

�$0�

"���&��
�	�33&	�9�	�;
�	�����������	��
Sets and gets the orientation of the sound source.

�
�����	�

HRESULT SetOrientationAngles3f(
A3DVAL fHeading, A3DVAL fPitch, A3DVAL fRoll,

);

HRESULT SetOrientationAngles3fv(
LPA3DVAL fHPR,

);

HRESULT GetOrientationAngles3f(
LPA3DVAL pHeading, LPA3DVAL fPitch, LPA3DVAL fRoll,

);

HRESULT GetOrientationAngles3fv(
LPA3DVAL fHPR,

);

��
��	�	
��
fHeading, fPitch, fRoll Euler angles describing the orientation of the source.

fHPR Array of three A3DVALs describing heading, pitch and roll.

 	��
��4���	��

S_OK
E_INVALIDARG if NULL pointers are passed in.

�	��
������

IA3dSource2::SetOrientationAngles sets the orientation of the source in 3D space. The
parameters it takes are rotation values in degrees. fHeading represents rotation around
the Y (up) axis, fPitch rotation about the X (right) axis, and fRoll rotation about the Z
(out) axis. The rotations are applied in the following order: fHeading, fPitch, and fRoll.
The rotation described by the three angles is relative to the transformation applied to the
listener. If IA3dGeom2::BindSource is not being used, there is no transformation
applied to the source so the angles are absolute. If IA3dGeom2::BindSource is being
used, the rotation is relative to the coordinate system described by the current matrix
when IA3dGeom2::BindSource was called.

� �

� � �$��

Using this method to set the source orientation will override the results of using
IA3dSource2::SetOrientation. The two methods simply use different inputs to perform
the same function.
IA3dSource2::GetOrientationAngles returns the rotation angles of the source relative
to its coordinate system. If IA3dSource2::SetOrientation has been used, the angles will
have been computed from the two vectors supplied to that method, so those angles will
be returned rather than the last set of angles sent to
IA3dSource2::SetOrientationAngles. It's worth noting that the same orientation can be
described by more than one set of rotation angles. For example, heading, pitch and roll of
0, 0, 0 is the same as 180, 180, 180. If the orientation was set using the vector method,
IA3dSource2::GetOrientationAngles might not return the most obvious angles for that
orientation although they will be correct.

&		������

IA3dSource2::SetOrientation
IA3dGeom2::BindSource

�

�$��

"���&��
�	�33&	�9�	����4���	��
Sets the gains for multi-channel, non-spatialized sources.

�
�����	�

HRESULT SetPanValues(
DWORD dwNumValues,
LPA3DVAL fGains

);

HRESULT GetPanValues(
DWORD dwNumValues,
LPA3DVAL fGains

);

��
��	�	
��
dwNumValues Number of pan values being sent in the array.

fGains Gain values for each channel.

 	��
��4���	��

S_OK
A3DERROR_SOURCE_IN_A3D_MODE
A3DERROR_INVALID_NUMBER_OF_CHANNELS

�	��
������

By default, sources are spatialized in 3D and their gains are computed as factors of
distance, location, and occlusion attenuation in addition to any gain value explicitly set
by the application through IA3dSource2::SetGain and IA3d5::SetOutputGain. Using
IA3dSource2::SetRenderMode to switch a source to native mode means that it is no
longer subject to any 3D processing and enables this method to set its pan values
explicitly.
Only two channel playback is currently supported in native mode, so only left and right
gain values can be passed in to IA3dSource2::SetPanValues. As such, dwNumValues
should be 2. The valid range for the gain values is the same as for all the other methods
used to set gains - 0.0 to 1.0 inclusive.
This method will return an error if the source is not in native mode, but it will still set the
pan values meaning that when the source is switched to native mode the values will be
applied.

� �

� � �$��

&		������

IA3dSource2::Set/GetRenderMode
IA3dSource2::Set/GetGain
IA3d5::Set/GetOutputGain

�

�$!�

"���&��
�	�33&	�9�	�������
Sets and gets the playback pitch bend of a source.

�
�����	�

HRESULT SetPitch(
A3DVAL fPitch

);

HRESULT GetPitch(
LPA3DVAL pfPitch

);

��
��	�	
��
pPitch Pitch bend factor.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

IA3dSource2::SetPitch lets an application change the playback rate of a source. A value
of 2.0 shifts the source up an octave and a value of 0.5 shifts it down an octave. Valid
ranges depend on the input sample rate of the sound source and how much Doppler is
being applied, but in most cases 0.5 – 2.0 is valid. The default value is 1.0 meaning that
the source's pitch is unaltered.

&		������

None.

� �

� � �$$�

"���&��
�	�33&	�9�	��������������
Sets the playback cursor in a sound source to a particular time.

�
�����	�

HRESULT SetPlayPosition(
DWORD dwOffset

);

��
��	�	
��
dwOffset Number of bytes from the beginning of the wave data.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

IA3dSource2::SetPlayPosition moves the playback cursor in the wave data for a sound
source to a particular point, dwOffset bytes from the beginning of the wave. This position
is sample accurate.
If a position greater than the length of the wave data is specified the method returns
E_INVALIDARG. Calling this method does not affect the playback state of the sound
source.
IA3dSource2::GetPlayPosition returns the position of the playback cursor in the wave
data for the source.

&		������

IA3dSource2::Rewind
IA3dSource2::SetPlayTime

�

�$%�

"���&��
�	�33&	�9�	��������	�
Sets and gets the playback cursor in the wave data.

�
�����	�

HRESULT SetPlayTime(
A3DVAL fSeconds

);

HRESULT GetPlayTime(
LPA3DVAL fSeconds

);

��
��	�	
��
fSeconds Floating point number specifying seconds from the start of the wave

data.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

IA3dSource2::SetPlayTime moves the playback cursor in the wave data for a sound
source to a particular point, fTime seconds from the beginning of the wave. This method
provides the same functionality as IA3dSource2::SetPlayPosition with a different input
parameter.
If a time greater than the length of the wave data is specified then method returns
E_INVALIDARG. Calling this method does not affect the playback state of the sound
source.
IA3dSource2::GetPlayTime returns the position of the playback cursor in the wave
data for the source.

&		������

IA3dSource2::Set/GetPlayPosition

� �

� � �$'�

"���&��
�	�33&	�9�	����������
Sets and gets the location of a sound source.

�
�����	�

HRESULT SetPosition3f(
A3DVAL x, A3DVAL y, A3DVAL z

);

HRESULT GetPosition3f(
LPA3DVAL px, LPA3DVAL py, LPA3DVAL pz

);

HRESULT SetPosition3fv(
LPA3DVAL vxyz

);

HRESULT GetPosition3fv(
LPA3DVAL vxyz

);

��
��	�	
��
x, y, z Three floats for the position of the sound source.

vxyz An array of three floats for the position of the sound source.

 	��
��4���	��

S_OK

�	��
������

IA3dSource2::SetPosition sets the location of the sound source in 3D space, relative to
the current matrix in effect when IA3dGeom2::BindSource is called.
IA3dSource2::GetPosition returns the position set by IA3dSource2::SetPosition.

&		������

IA3dSource2::Set/GetOrientation
IA3dSource2::Set/GetVelocity
IA3dGeom2::BindSource

�

�$(�

"���&��
�	�33&	�9�	��
��
����
Sets the priority of the source.

�
�����	�

HRESULT SetPriority(
A3DVAL fPriority

);

HRESULT GetPriority(
LPA3DVAL pfPriority

);

��
��	�	
��
fPriority A floating point number between 0.0 and 1.0 inclusive (default

0.5).

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

IA3dSource2::SetPriority lets the application assign priorities to sound sources. The
Resource Manager assigns a weight to each source based on a combination of priority
and audibility. The bias of the weighting function can be globally modified with
IA3d5::SetRMPriorityBias.
All sound sources have a default priority of 0.5 with lowest priority being 0.0 and highest
1.0.

&		������

IA3d5::SetRMPriorityBias

� �

� � �$)�

"���&��
�	�33&	�9�	� 	��	������	���&���
	�

Scales the reflection delays for a source.

�
�����	�

HRESULT SetReflectionDelayScale(
A3DVAL fScale

);

HRESULT GetReflectionDelayScale(
LPA3DVAL fScale

);

��
��	�	
��
fScale Non-negative floating point number specifying the delay scale.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

This method scales the delays of all the reflections generated by a source. It can be used
to exaggerate the effect of reflections when fScale is greater than 1.0 (the default). fScale
can be any positive number, but reflection delays are still clamped at the value set in
IA3d5::SetMaxReflectionDelayTime, or the default of 0.3 seconds if that method
wasn't called.
The delay scaling applied by this method is multiplied by the delay scaling set using
IA3dGeom2::SetReflectionDelayScale. If either is set to 0.0, reflections will not be
delayed at all. Setting either value to 0.0 is not recommended.

&		������

IA3dSource2::SetReflectionGainScale
IA3dGeom2::SetReflectionDelayScale
IA3dGeom2::SetReflectionGainScale

�

�%0�

"���&��
�	�33&	�9�	� 	��	���������&���	�
Scales the reflection gains for a source.

�
�����	�

HRESULT SetReflectionGainScale(
A3DVAL fScale

);

HRESULT GetReflectionGainScale(
LPA3DVAL fScale

);

��
��	�	
��

fScale Non-negative floating point number specifying the gain scale.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

This method scales the gains of all the reflections generated by a source. It can be used to
exaggerate the effect of reflections when fScale is greater than 1.0 (the default). fScale
can be any positive number, but reflection gains are clamped at 1.0.
The gain scaling applied by this method is multiplied by the gain scaling set using
IA3dGeom2::SetReflectionGainScale. If either is set to 0.0, reflections will be silent.

&		������

IA3dSource2::SetReflectionDelayScale
IA3dGeom2::SetReflectionDelayScale
IA3dGeom2::SetReflectionGainScale

� �

� � �%��

"���&��
�	�33&	�9�	� 	��	
*��	�
Controls how a source is rendered.

�
�����	�

HRESULT SetRenderMode(
DWORD dwMode

);

HRESULT GetRenderMode(
LPDWORD pdwMode

);

��
��	�	
��
dwMode Mode bit mask for source rendering. Specify:

A3DSOURCE_RENDERMODE_A3D
A3DSOURCE_RENDERMODE_MONO
A3DSOURCE_RENDERMODE_1ST_REFLECTIONS
A3DSOURCE_RENDERMODE_OCCLUSIONS
A3DSOURCE_RENDERMODE_NATIVE
A3DSOURCE_RENDERMODE_DEFAULT

 	��
��4���	��

S_OK
E_FAIL

�	��
������

This method allows the application to change the type and level of processing performed
on a source. By default, sources are spatialized and will render reflections and occlusions
if geometry is being used. This default mode is equivalent to dwMode =
A3DSOURCE_RENDERMODE_A3D |
A3DSOURCE_RENDERMODE_OCCLUSIONS |
A3DSOURCE_RENDERMODE_1ST_REFLECTIONS.
Switching the render mode to A3DSOURCE_RENDERMODE_NATIVE will disable all
3D processing and play the source back in its native format. This enables
IA3dSource2::SetPanValues, allowing the source to be panned between two output
channels. In this mode, calling any of the 3D or geometry methods for a source will
return an error, though the property will still be set and applied when the source is
switched to A3D mode.

�

�%��

A3DSOURCE_RENDERMODE_MONO leaves the source as A3D but bypasses the
HRTF and distance model processing. Again, geometry has no effect on sources in this
mode.
Sources that were created as unmanaged can't be switched between A3D and native
modes, though unmanaged A3D sources can still have reflections and occlusions and
mono toggled on and off.
The A3D, mono and native modes are mutually exclusive.

&		������

IA3d5::NewSource
IA3dSource2::Set/GetPanValues

� �

� � �%��

"���&��
�	�33&	�9�	� 	.	
,*�7�
Sets or gets the mix level in the current reverb for this source.

�
�����	�

HRESULT SetReverbMix(
A3DVAL Level,
A3DVAL HiFreq

);

HRESULT GetReverbMix(

A3DVAL *pLevel,
A3DVAL *pHiFreq

);

��
��	�	
��
Level Wet/dry reverberation amount for this source.

HiFreq Low-pass filter amount for this source.

pLevel Pointer to be filled with the wet/dry reverberation amount.

pHiFreq Pointer to be filled with low-pass filter amount.

 	��
��4���	��
S_OK
A3DERROR_INVALID_ARGUMENT
A3DERROR_FEATURE_NOT_REQUESTED

�	��
������

The SetReverbMix function sets the mix level in the reverb for this source
The Level parameter controls the wet/dry mix of this source in the current reverb. This
value is a percentage, and can range from 0.0 (completely dry) to 1.0 (completely wet).
The HiFreq parameter is a relative adjustment to the direct path's low-pass filter. This
value is a percentage, and can range from 0.0 (no low-pass effect) to 1.0 (full low-pass
effect). The low-pass filter affects the early reflections and reverb identically by reducing
their energy at high frequencies.
For these functions to succeed, reverb must have been requested in the IA3d5::InitEx
call by including the A3D_REVERB flag. If this was not the case,
A3DERROR_FEATURE_NOT_REQUESTED will be returned. In addition, the

�

�%!�

source’s render mode must be A3D. If not, calling SetReverbMix will return the error
code A3DERROR_SOURCE_IN_NATIVE_MODE, though the properties will still be
set and applied when the source is switched to A3D mode.

&		������

IA3d5::InitEx
IA3dReverb

� �

� � �%$�

"���&��
�	�33&	�9�	��
�����
�*��	�
Sets the transform mode for a source.

�
�����	�

HRESULT SetTransformMode(
DWORD dwMode

);

HRESULT GetTransformMode(
LPDWORD dwMode

);

��
��	�	
��
dwMode Transform mode to be used. Specify one of:

 A3DSOURCE_TRANSFORMMODE_NORMAL

 A3DSOURCE_TRANSFORMMODE_HEADRELATIVE

 	��
��4���	��

S_OK
E_INVALIDARG
A3DERROR_SOURCE_IN_NATIVE_MODE

�	��
������

A source has properties to specify its position, orientation and velocity in the world.
Sometimes it can be useful to redefine the origin for the source, making those properties
relative to a location other than the origin of the world. This can be achieved in two
ways. One is to use IA3dGeom2::BindSource, which applies the current matrix to the
source meaning that its position, orientation and velocity will be transformed by that
matrix. This allows sources to be easily attached to objects which are moving around in
the world, but requires that the application be using the IA3dGeom2 interface. If the
requirement is simply to attach a source to the listener, setting the source into listener-
relative coordinates using IA3dSource2::SetTransformMode is easier than using the
matrix stack and binding the source to the same matrix as the listener.
Possible values for dwMode are A3DSOURCE_TRANSFORMMODE_NORMAL and
A3DSOURCE_TRANSFORMMODE_HEADRELATIVE. By default, sources are set to
the former.
When a source is in head relative mode, all tranformations of that source are relative to
the listener. If IA3dGeom2::BindSource was used to apply a tranformation matrix to

�

�%%�

the source, that tranformation is applied after transforming to listener coordinates. Even
binding the source to an identity matrix will not locate the source at the origin of the
world if it is in head relative mode.
This method sets a mode for the source that stays in effect until the method is called
again to change it. It is not necessary to call this method with the same parameter every
frame.

&		������

IA3dGeom2::BindSource
IA3dGeom2::BindListener

� �

� � �%'�

"���&��
�	�33&	�9�	�4	�������
Sets and gets the velocity of a source.

�
�����	�

HRESULT SetVelocity3f(
A3DVAL vx, A3DVAL vy, A3DVAL vz

);

HRESULT SetVelocity3fv(
LPA3DVAL vxyz

);

HRESULT GetVelocity3f(
LPA3DVAL pvx, LPA3DVAL pvy, LPA3DVAL pvz

);

HRESULT GetVelocity3fv(
LPA3DVAL vxyz

);

��
��	�	
��
vx, vy, vz Three floats for the velocity vector of the source.

vxyz An array of three floats for the velocity vector of the source.

 	��
��4���	��

S_OK

�	��
������

IA3dSource2::SetVelocity sets the velocity vector of a source relative to the current
matrix in effect when IA3dGeom2::BindSource is called. This information is used to
compute Doppler shift. If the source isn't bound to a matrix the velocity vector passed in
to this method represents the absolute velocity of the source in the world.

&		������

IA3dSource2::Set/GetPosition
IA3dSource2::Set/GetOrientation
IA3dGeom2::BindSource

�

�%(�

"���&��
�	�33&	�9�	�4����	�
��5������

�
�����	�

HRESULT SetVolumetricBounds(
A3DVAL dx,
A3DVAL dy,
A3DVAL dz
);

HRESULT GetVolumetricBounds(
LPA3DVAL pdx,
LPA3DVAL pdy,
LPA3DVAL pdz
);

��
��	�	
��
dx, dy, dz dimensions of the bounding box, in full length. dx = width, dy = height,

dz = depth.

pdx, pdy, pdz return pointer values to the dimensions of the bound box.

 	��
��4���	��
E_INVALIDARG
E_POINTER
S_OK

�	��
������

By default, a source is considered a point source and has volumetric dimensions (dx, dy,
dz) all set to 0. If any one of the dimension values is given a value greater than zero, the
source will be rendered with volumetric properties.
The orientation of the boundaries is controlled by the source orientation functions
IA3dSource2::Get/Set Orientation, IA3dSource2::Get/SetOrientationAngles, and
IA3dGeom2::BindSource.
Volumetric source are rendered differently than point sources. Their distance gain,
heading, and occlusion properties are treated different and depends on the dimensional
size of the volume of the source.
The rendering characteristics of a volumetric source can be changed using
IA3dSource2::Set/GetVolumetricDamping.

� �

� � �%)�

When setting the bounds dimension only valid values will be accepted. Invalid values
will be ignored and an error E_INVALIDARG will be returned.

&		�����3�

IA3dSource2::Set/GetVolumetricDamping

�

�'0�

"���&��
�	�33&	�9�	�4����	�
���������
Sets and gets the damping factors used to rendering the volumetric source.

�
�����	�

HRESULT SetVolumetricDamping(
A3DVOLSRCDAMPINFO *pVolSrcDampInfo

);

HRESULT GetVolumetricDamping(

A3DVOLSRCDAMPINFO *pVolSrcDampInfo
);

��
��	�	
��
pVolSrcDampInfo Pointer to the structure damp info structure (described below)

 	��
��4���	��
E_INVALIDARG
E_POINTER
S_OK

�	��
������

This function allows tweaking of the rendering characteristics of a volumetric source. It
only applies to sources that are rendered as a volumetric source, and these are defined as
sources that have non-zero dimensional bounds.
When determining the amount a volumetric source is occluded, we use two values: size-
relative fraction and a visibility-relative fraction.
The size-relative damping fraction approximates the percentage of the source that is
occluded by the polygon. It is defined as:

(size of occluding polygon) /

((size of occluding polygon) + (size of the sound source))

The visibility-relative damping fraction is the number of corner points that are occluded.
It is defined as:

(number of corner points occluded) / (nTestPointsMax * 2)
The only parameter is a pointer to an A3DVOLSRCDAMPINFO structure, which
contains information that will affect the rendering of a volumetric Source.

� �

� � �'��

When setting the structure only valid values will be accepted. Invalid values will be
ignored and an error E_INVALIDARG will be returned.

&		������

A3DVOLSRCDAMPINFO
IA3dSource2::Set/GetVolumetricBounds

�

�'��

"���&��
�	�33&	�����#.	���
Sets an event to be triggered at a certain point in the wave data.

�
�����	�

HRESULT SetPlayEvent(
DWORD dwOffset,
HANDLE hEvent

);

��
��	�	
��
dwOffset Offset in bytes from beginning of wave data at which to trigger the

event.

hEvent Handle to an event.

 	��
��4���	��

S_OK
E_OUTOFMEMORY
A3DERROR_NO_WAVE_DATA
A3DERROR_FAILED_QUERY_DIRECTSOUNDNOTIFY
A3DERROR_FAILED_DIRECTSOUNDNOTIFY

�	��
������

This method makes it possible to place markers in the wave data of a source and have
A3D trigger events when the playback cursor reaches each of the markers.
IA3dSource2::SetPlayEvent places a single marker with its associated event in the
wave data, and it can be called any number of times to add multiple markers. Calling it
twice with the same dwOffset value overwrites the previous event with the new one.
Setting the event to NULL clears the event previously set for that location. hEvent is a
Windows event handle created with the Win32 API call CreateEvent.
There is a special case value for dwOffset, A3DSOURCE_WAVEEVENT_STOP, which
triggers the event when the source is stopped either because the application called
IA3dSource2::Stop or because the end of the data was reached in a non-looping source.
Also note the following:
Event positions are in bytes and values equal to or greater than the allocated wave data
size are not signaled.
A source's position macro A3DSOURCE_WAVEEVENT_STOP will not signal if the
source is played as A3D_LOOPED.

� �

� � �'��

Duplicated sources do not inherit the Event triggers placed on the original source.
A3D is not thread safe. When processing the events in a different thread, use some
interlock scheme (such as Mutex or Semaphores) with the main thread when operating
on any A3D objects.

&		������

IA3dSource2::ClearPlayEvents
IA3dSource2::Stop

�

�'!�

"���&��
�	�33&���
Stops a source playing.

�
�����	�

HRESULT Stop(
void

);

��
��	�	
��

None.

 	��
��4���	��

S_OK
A3DERROR_NO_WAVE_DATA
A3DERROR_FAILED_STOP

�	��
������

IA3dSource2::Stop stops a sound source playing. It sends a signal to the resource
manager to tell it to remove this sound source from its play list. Unlike
IA3dSource2::Play, this method is applied immediately and is not deferred until
IA3d5::Flush is called.

&		������

IA3dSource2::Stop

� �

� � �'$�

"���&��
�	�33<������
Unlocks a previously locked sound source.

�
�����	�

HRESULT Unlock(
LPVOID pvAudioPtr1,
DWORD dwNumBytes1,
LPVOID pvAudioPtr2,
DWORD dwAudioBytes2

);

��
��	�	
��
pvAudioPtr1 Address of the value retrieved from IA3dSource2::Lock.

dwNumBytes1 Number of bytes written to the first block.

pvAudioPtr2 Address of the value retrieved from IA3dSource2::Lock.

dwNumBytes2 Number of bytes written to the second block.

 	��
��4���	��

S_OK
A3DERROR_NO_WAVE_DATA
A3DERROR_FAILED_UNLOCK_BUFFER

�	��
������

Following a call to IA3dSource2::Lock and data being copied to the sound source,
IA3dSource2::Unlock enables the new data to be played back.

&		������

IA3dSource2::Lock
IA3dSource2::AllocateAudioData
IA3dSource2::LoadFile

�

�'%�

������&>&;< �#�

�	��
������

This structure is used in IA3dSource2::GetInfo, and wraps the information structures
used for the various audio formats supported by A3D 3.0. Currently, these consist of
PCM Wave, MP3, and AC-3 files.

*	�,	
�� �
DWORD dwSize Always set this as sizeof(A3DCAPS_SOURCE).

DWORD dwType Specifies the structure which the Union pointer of this
A3DCAPS_SOURCE points to. Valid values are:
A3DSOURCE_FORMAT_WAVE,
A3DSOURCE_FORMAT_MP3, and
A3DSOURCE_FORMAT_AC3.

char *szFilename This pointer is filled in with the name of the file that the
current source is playing, if it has a file. This value is
temporary and is only valid in the scope of the calling
function and while the source is still valid..

union data Union of the following structures:

A3DSOURCE_WAVEFORMAT data.waveFormat
Holds data for a PCM-WAV source. This pointer is only valid if dwType is
A3DSOURCE_FORMAT_WAVE.

A3DSOURCE_MP3INFO data.mp3Info
Holds data for a MP3 source. This pointer is only valid if dwType is
A3DSOURCE_FORMAT_MP3.

A3DSOURCE_AC3INFO data.ac3Info
Holds data for an AC-3 source. This pointer is only valid if dwType is
A3DSOURCE_FORMAT_AC3.

�

� � �''�

���&;< �#>*��"-/;�

�	��
������

This structure contains information about MP3 audio data, and is only used in with
sources that are playing MP3 data. This is encoded information, and isn't necessarily the
number of channels or the sample rate the output buffer is playing at.
IA3dSource2::GetAudioFormat gives you that information.

*	�,	
�� �
INT nMpegLayer Major version number.

INT nMpegVersion Minor version number.

INT nBitrate Encoded bitrate.

INT nChannels Number of channels in the decoded stream – usually 1
or 2.

INT nSamplerate Sample rate of the decoded samples.

INT nBitsPerSample Number of bits per decoded sample.

FLOAT fTotalPlayLength Time of mp3 playback in seconds.

�

�'(�

���&;< �#>��4#/; *���

�	��
������

This structure is used to describe a chunk or stream of PCM-wave audio data. It is
identical to the Windows WAVEFORMATEX structure, and has the same purpose.

*	�,	
�� �
DWORD dwSize Size of the A3DSOURCE_WAVEFORMAT structure.

Must be set.

WORD nChannels Number of discreet audio channels in this stream. Mono
is 1, stereo is 2, quadraphonic is 4.

DWORD nSamplesPerSec Number of samples to be played per second. Standard
values include 11025, 22050, 44100, 48000.

DWORD nAvgBytesPerSec Number of bytes to be played per second. Defined as
nChannels * wBitsPerSample * nSamplesPerSec.

WORD nBlockAlign Same as sample size. Defined as nChannels *
wBitsPerSample.

WORD wBitsPerSample Size of each individual sample. Usually 8 or 16 bits.

�

� � �')�

���4;2& ���*�"-/;�

�	��
������

The A3DVOLSRCDAMPINFO structure specifies an application specified reverb. The
descriptions of the various values are below.

*	�,	
�� �
DWORD dwSize The size of this structure. Always set the dwSize

member before using the Set/Get functions.

A3DVAL fAzimuthPan This number exaggerates the effect. Setting it to 0
completely eliminates the volumetric effect, while
setting it to 1.0 takes it to extreme, so that the source
behaves as if every point on the surface of the volume
generated audio at full volume. The default value is
0.5f.

A3DVAL fDampWeighting Indicates the weighting to be applied to the size-relative
and visibility-relative damping fractions. A value of 0
gives all the weighting to the size-relative fraction, and
none to the visibility-relative fraction. A value of 1 gives
all the weighting to the visibility-relative fraction. The
default value is 0.7f, giving 70% weighting to the
visibility-relative fraction, and 30% to the size-relative
fraction.

A3DVAL fSizeDampMin This defines the minimum value the size-relative
fraction can be. Setting it to 0.0 allows the source to be
minimally occluded, while setting it to 1.0 means that
any occluding polygon, regardless of its size, will fully
occlude this source. By default the value is 0.5f. This
fraction is balanced against the visibility-relative
damping fraction and used in the final occlusion
damping calculation as described below. The default
value is 0.5f. Note that the distances from the listener to
the occluding polygon and to the source are not
considered by this fraction.

INT nTestPointsMax Indicates the number of test points to use for the
visibility-relative damping fraction. The occlusion
algorithm casts a ray from each test point to the listener

�

�(0�

and checks the ray for intersection with the occluding
polygon. It then calculates the visibility-relative
damping fraction. This fraction is balanced against the
size-relative damping fraction and used in the final
occlusion damping calculation as described above. The
minimum value is zero, which results in a value of 1 for
the visibility-relative damping fraction. The maximum
value is 6, which results in the testing of all points on
the surface of the sound source. The default value is 6.
In general, this value should be left at 6. It’s useful only
in edge cases, such as optimizing the rendering of
hundreds of volumetric sources or thousands of
occlusions polygons.

BOOL bMonoInside This value determines how the source is rendered when
the listener is inside the volume. Setting this value to
TRUE renders the Source as mono, so it plays at full
volume from all four speakers. Setting this to false
renders the source as a point source. The default is
FALSE.

�

� � �(��

��	
������3��
���$�)���

"� �������3	2���

"����
�	
��&	��"��	
���	�
The A3D API supports property sets through the interface IA3dPropertySet that is similar to the
DirectSound IKsPropertySet.

DECLARE_INTERFACE_(IA3dPropertySet, IUnknown)
{
 // IUnknown Methods.
 STDMETHOD(QueryInterface)
 STDMETHOD_(ULONG, AddRef)
 STDMETHOD_(ULONG, Release)

 // IA3dPropertySet Methods.
 STDMETHOD(QuerySupport)
 STDMETHOD(Get)
 STDMETHOD(Set)
 STDMETHOD(AddInitialStateParameters)
};

Methods IA3dPropertySet::QuerySupport, IA3dPropertySet::Get, and IA3dPropertySet::Set are
the same as documented in DirectSound IKsPropertySet.

The function, IA3dPropertySet::AddInitialStateParameter is a required function that sets the
“Zero” state of a property set. This is a required function because A3D sources can be resource
managed. A zero state of the property set is needed before property sets can work.

�

�(��

In A3D, there are two types of property sets. A global property set and a buffer specific property
set. The following table lists the differences of the global and buffer specific property sets.

 Global Buffer specific
Getting the Interface Query from the root IA3Dx

interface.
Query from the IA3dSource2
interface, AFTER the source has
allocated wave data.

Purpose For global application of property
sets.

For buffer specific application of
property sets.

Timing Effect Applied immediately. Only applied if buffer is in
hardware.

IA3dPropertySet::AddInitalStateParam
Function

Works as described. Not applicable.

�

� � �(��

&���	����	�

The code flows like this:

// Query for global property set.interface
IA3dPropertySet *pGlobalPropertySet = NULL;
g_pA3d->QueryInterface(IID_IAdPropertySet, &pGlobalPropSet);

// Query for Support
ULONG ulSupport;
ULONG ulID = 0;
pGlobalPropSet->QuerySupport(IID_CardSpecificGuid, ulItem, &ulSupport);

// Call AddInitialStateParameter to set the Zero state.
if (ulSupport &(KSPROPERTY_SUPPORT_GET|KSPROPERTY_SUPPORT_SET) == FALSE)
 return E_FAIL;

PROPERTYSETDATA PropSetData;
ZeroMemory(&PropSetData, sizeof(PROPERTYSETDATA);
pGlobalPropSet->AddInitialStateParameters(IID_CardSpecificGuid,

ulID,&PropSetInstance,
sizeof(PropSetInstance),
&PropSetData,
sizeof(PropSetData));

// You can release the global Interface now
// if you have no more global settings.
pGlobalPropertySet->Release();

// New a source, Load data
g_pA3d->NewSource(&pSource);
pSource->LoadWaveData("heli.wav");

// Query for buffer, property set.
IA3dPropertySet *pBufferPropSet=NULL;
pSource->QueryInterface(IID_IA3dPropertySet, &pGlobalPropSet);

// Set/Get property set on buffer.
...

The sample program propsets.cpp will demonstrate the use of property sets through the A3D
API.

You will need a sound card that supports property sets for the program to work.

�

�(!�

"����
�	
��&	�33���"������&���	��
��	�	

��

This method sets the "zero" state of a property. This is a required function, needed
before property sets can be used. Is valid only in the global context.

�
�����	�

HRESULT AddInitialStateParameter(
REFGUID rguidPropSet,
ULONG ulId,
LPVOID pInstanceData,
ULONG ulInstanceLength,
LPVOID pPropertyData,
ULONG ulDataLength

);

��
��	�	
��
rguidPropSet Reference to (C++) or address of (C) a GUID representing the

property set to be accessed.

ulId Item within the property set to be accessed. Items are indexed from 0
and are always the same for a given property set.

pInstanceData Instance data for the set call. If there are multiple objects within the
port that this operation can act on, the instance data specifies which
object should be used. No standard property set items at the
DirectMusic API level use instance data; however, vendor-defined
extensions are free to use it.

ulInstanceLength Number of bytes pointed to by pInstanceData

pPropertyData Property data to set for this item.

ulDataLength Number of bytes pointed to by pPropertyData

 	��
��4���	��
S_OK The method succeeded.

E_INVALIDARG One of the arguments was passed an invalid value.

�

� � �($�

E_POINTER One of the arguments is a NULL pointer and a non-NULL
pointer is expected.

E_OUTOFMEMORY Could not allocate memory for the CPropertySetItem.

�	��
������

This method must be called at least once before the IA3dPropertySet::Set method may
be called. When streaming buffers are swapped around we need to restore the state of
the hardware buffer to some sort of initial state so we don't inherit the last buffers
properties into the new one.

&		������

None.

�

�(%�

"����
�	
��&	�33��� 	��
Increments the IA3dPropertySet reference count.

�
�����	�

ULONG AddRef(
void

);

��
��	�	
��
None.

 	��
��4���	��

Returns the new reference count.

�	��
������

When going through a COM method such as QueryInterface or NewSource to get an
interface pointer to a component, the reference count of the component is automatically
incremented. The reference count is used to let the component know when nothing is
accessing it anymore and that it can delete itself from memory.
Whenever an interface pointer is assigned to another interface pointer, the AddRef
method should be called to let the component know that two pointers are using the same
interface. Now when the Release method is called, the component won't delete itself
since it has been told something else is still using it. Consider the following example:

hr = pRoot->QueryInterface(IID_IBox, (void **)&pBox1);
if (SUCCEEDED(hr))
{

pBox1->DrawIt();
pBox2 = pBox1;
pBox2->AddRef();
pBox1->Release();

}

While pBox1 is now invalid because it has been released, pBox2 remains intact and can
still be used.
All A3D 3.0 interfaces inherit the COM IUnknown interface that contains the methods
AddRef, QueryInterface, and Release. Inside COM by Microsoft Press is an excellent
resource for detailed information on COM.

�

� � �('�

&		������

IA3dPropertySet::QueryInterface
IA3dPropertySet::Release

�

�((�

"����
�	
��&	�33�	��
The IKsPropertySet::Get method retrieves data for an item in a property set.

�
�����	�

HRESULT Get(
REFGUID rguidPropSet,
ULONG ulId,
LPVOID pInstanceData,
ULONG ulInstanceLength,
LPVOID pPropertyData,
ULONG ulDataLength,
ULONG *pulBytesReturned

);

��
��	�	
��
rguidPropSet Reference to (C++) or address of (C) a GUID representing the

property set to be accessed.

ulId Item within the property set to be accessed. Items are indexed from 0
and are always the same for a given property set GUID.

pInstanceData Instance data for the get call.

ulInstanceLength Number of bytes pointed to by pInstanceData.

pPropertyData Data to set for this item.

ulDataLength Number of bytes pointed to by pPropertyData

pulBytesReturned Address of a variable to receive the number of bytes written into
pPropertyData.

 	��
��4���	��

Return values are determined by the designer of the property set.
If the method succeeds, the return value may be S_OK.
If it fails, the method may return E_POINTER.

�	��
������

The format of the data in both pInstanceData and pPropertyData is item-specific.

&		������

�

� � �()�

None.

�

�)0�

"����
�	
��&	�338�	
�"��	
���	�
Returns an interface pointer for a supported interface.

�
�����	�

HRESULT QueryInterface(
REFIID iid,
LPVOID *pInterface

);

��
��	�	
��
iid Interface identifier. Specify only IID_IA3dPropertySet.

pInterface Address of a pointer to an interface which will be filled out by the
method

 	��
��4���	��

S_OK
E_NOINTERFACE

�	��
������

All A3D interfaces inherit the IUnknown interface that contains a method called Query-
Interface. This method is used to let the application know what other interfaces a
particular interface supports, and to return a pointer to a requested interface if it is
supported. The different A3D interfaces support different interfaces.
The IA3dPropertySet interface doesn't support any other interfaces, so the only valid
value for iid is IID_IA3dPropertySet, which will return another listener interface pointer
and increment the reference count.
Calling any QueryInterface and asking for an interface that isn't supported will return
the error E_NOINTERFACE. The address of the pointer passed in to the method will be
left at the value it was set to by the calling method, so it may not be NULL. For this
reason, it is essential to check the return value of this method.

&		������

IA3dPropertySet::AddRef
IA3dPropertySet::Release

�

� � �)��

"����
�	
��&	�338�	
�&��
��
Determines whether a property in a property set is supported on the port or device.

�
�����	�

HRESULT QuerySupport(
REFGUID rguidPropSet,
ULONG ulId,
ULONG *pulTypeSupport

);

��
��	�	
��
rguidPropSet Reference to (C++) or address of (C) a GUID representing the property

set to be queried.

ulId Item within the property set to be accessed. Items are indexed from 0 and
are always the same for a given property set.

pulTypeSupport Address of a variable to receive information about support for the
property. If the property or property set does not exist, this is set to 0.
Otherwise it may contain one or both of the following flags:

KSPROPERTY_SUPPORT_ GET The property item may be retrieved.

KSPROPERTY_SUPPORT_SET The property item may be set.

 	��
��4���	��

Return values are determined by the designer of the property set.
If the method succeeds, the return value may be S_OK. (See Description.)
If it fails, the method may return one of the following error values:
E_NOTIMPL (See Description.)
E_POINTER

�	��
������

Whether it is valid to support some properties within the set but not others depends on
the definition of the property set. Consult the hardware manufacturer's specification for
the property set of interest.

�

�)��

Some implementations may return S_OK when the property is not supported, and others
may return E_NOTIMPL. To be sure that a property is supported you should check both
the return value of the method and the value returned in pulTypeSupport.

&		������

None.

�

� � �)��

"����
�	
��&	�33 	�	��	�
Decrements the IA3dPropertySet reference count.

�
�����	�

ULONG Release(
void

);

��
��	�	
��
None.

 	��
��4���	��

Returns the new reference count.

�	��
������

When going through a COM method such as QueryInterface or NewSource to get an
interface pointer to a component, the reference count of the component is automatically
incremented. The reference count is used to let the component know when nothing is
accessing it anymore and that it can delete itself from memory.
Calling IA3dPropertySet::Release decrements the reference count for the
IA3dPropertySet interface, and if it is 0, the object deletes itself from memory.
All A3D 3.0 interfaces inherit the COM IUnknown interface that contains the methods
AddRef, QueryInterface, and Release. Inside COM by Microsoft Press is an excellent
resource for detailed information on COM.

&		������

IA3dPropertySet::AddRef
IA3dPropertySet::QueryInterface

�

�)!�

"����
�	
��&	�33&	��
Method sets the value of a property in a property set.

�
�����	�

HRESULT Set(
 REFGUID rguidPropSet,
 ULONG ulId,
 LPVOID pInstanceData,
 ULONG ulInstanceLength,
 LPVOID pPropertyData,
 ULONG ulDataLength

);

��
��	�	
��
rguidPropSet Reference to (C++) or address of (C) a GUID representing the

property set to be accessed.

ulId Item within the property set to be accessed. Items are indexed
from 0 and are always the same for a given property set.

pInstanceData Instance data for the set call. If there are multiple objects within
the port that this operation could act on, the instance data
specifies which object should be used. No standard property set
items at the DirectMusic API level use instance data; however,
vendor-defined extensions are free to use it.

ulInstanceLength Number of bytes pointed to by pInstanceData.

pPropertyData Property data to set for this item.

UlDataLength Number of bytes pointed to by pPropertyData.

 	��
��4���	��

Return values are determined by the designer of the property set.
If the method succeeds, the return value may be S_OK.
If it fails, the method may return E_POINTER.

�	��
������

The format of the data in both pInstanceData and pPropertyData is item-specific.

�

� � �)$�

&		������

None.

�

�)%�

�

� � �)'�

��	
����7�1��&���$�%�2����

"� �������3	2���

Aureal Wavetracing allows complex acoustic environments to be rendered in real time. Acoustic
Environments are composed of surfaces made out of three- and four-sided polygons and the
geometry engine renders the effect those polygons have on sound sources.

There are 3 interfaces within the geometry engine:
! IA3dGeom2
! IA3dList
! IA3dMaterial

IA3dGeom2 contains all the methods needed to manipulate the matrix stack, render polygons,
and set different rendering modes. IA3dList allows sequences of calls to IA3dGeom2 methods
to be recorded and rendered at a later stage by calling a single method. IA3dMaterial allows the
properties of an acoustic material to be defined. For more detail, refer to the introduction for each
of the Geometry Engine interfaces.

�

�)(�

"����	����"��	
���	�
An acoustic scene consists of a collection of polygons that interact with sounds in the scene. The
IA3dGeom2 interface provides methods for:

! Describing the collection of polygons.
! Applying geometric transformations to the listener and sound sources.

To obtain the geometry interface, call the QueryInterface method of the existing interface on
the IA3d5 object:

IA3dGeom2 *pIA3dGeom2;
pIA3d5->QueryInterface(IID_IA3dGeom2, (void **)&pIA3dGeom2);

If you're familiar with 3D graphics, think of an audio frame as being the same as a graphics
frame. A frame starts by clearing the audio frame buffer with a call to the method IA3d5::Clear.
A frame ends by refreshing the scene with a call to the method IA3d5::Flush. The geometry
buffer is refilled for each frame — you can't just send the data that changed from the last frame
since the scene is completely refreshed after each call to IA3d5::Flush. For example, if the scene
contains a cube, the six polygons for the cube are sent to the geometry engine every frame
between the calls to IA3d5::Clear and IA3d5::Flush. Polygons sent outside of these two calls
are not rendered.

When the geometry engine is being used, IA3d5::Flush computes reflections and occlusions for
the sounds in the scene. Reflections and occlusions are only computed correctly once the entire
scene is described — this is why they are computed at the end of the frame with the call to
IA3d5::Flush.

To add hierarchy to your scene, use matrices. A matrix is used to convert a point in 3D space
from one coordinate system to another. The application doesn't need to bind the listener and
sources to a matrix. By default, they're bound to an identity matrix so their positions and
orientations are left according to how they are defined through the IA3dSource2 and
IA3dListener interfaces.

In addition to describing polygons and applying geometric transformations to the listener and
source, the application can also:

! Define the acoustic properties of a surface by applying a material. Refer to
“IA3dMaterial Interface” on page 192 for more information.

! Reduce computation in a scene by caching the geometry. Refer to “IA3dList Interface”
on page 182 for more information.

�

� � �))�

"����	���33��� 	��
Increments the IA3dGeom2 reference count.

�
�����	�

ULONG AddRef(
void

);

��
��	�	
��
None.

 	��
��4���	��

Returns the new reference count.

�	��
������

When going through a COM method such as QueryInterface or NewSource to get an
interface pointer to a component, the reference count of the component is automatically
incremented. The reference count is used to let the component know when nothing is
accessing it anymore and that it can delete itself from memory.
Whenever an interface pointer is assigned to another interface pointer, the AddRef
method should be called to let the component know that two pointers are using the same
interface. Now when the Release method is called, the component won't delete itself
since it has been told something else is still using it. Consider the following example:

hr = pRoot->QueryInterface(IID_IBox, (void **)&pBox1);
if (SUCCEEDED(hr))
{

pBox1->DrawIt();
pBox2 = pBox1;
pBox2->AddRef();
pBox1->Release();

}

While pBox1 is now invalid because it has been released, pBox2 remains intact and can
still be used.
All A3D 3.0 interfaces inherit the COM IUnknown interface that contains the methods
AddRef, QueryInterface, and Release. Inside COM by Microsoft Press is an excellent
resource for detailed information on COM.

�

�00�

&		������

IA3dGeom2::QueryInterface
IA3dGeom2::Release

�

� � �0��

"����	���335	���@�"����	���33#���
Delimits the vertices of a primitive or a group like of primitives.

�
�����	�

HRESULT Begin(
DWORD dwType

);

HRESULT End(
void

);

��
��	�	
��
dwType Type of primitive to build. Specify one of:

A3D_TRIANGLES
A3D_QUADS
A3D_SUB_TRIANGLES
A3D_SUB_QUADS

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

Primitives describe the acoustic scene being rendered, and may reflect and occlude sound
sources in that scene. IA3dGeom2::Begin and IA3dGeom2::End enclose calls to
methods which define primitives. Between those calls, IA3dGeom2::Normal and
IA3dGeom2::Vertex specify the normal vectors and vertex locations of the primitives.
The dwType parameter specifies the type of primitive to construct. Three-dimensional
primitives must be convex and coplanar.
Valid primitive types are A3D_TRIANGLES and A3D_QUADS for 3 and 4 sided
polygons, and A3D_SUB_TRIANGLES and A3D_SUB_QUADS for 3 and 4 sided
subfaces. Subfaces are polygons that are placed onto a parent polygon, allowing regions
of a large surface to have different acoustic properties without splitting the parent
polygon into a lot of smaller polygons. Subfaces have an opening factor applied to them,
with 0.0 meaning the subface has no effect on the parent polygon and 1.0 meaning the
area it covers is completely transparent to audio, as if there was no polygon covering that

�

�0��

area at all. This allows doors to be easily rendered while keeping the overall polygon
count low.
Multiple primitives of the same type can be defined between a single
IA3dGeom2::Begin and IA3dGeom2::End pair. A3D automatically ends each polygon
when the correct number of vertices has been received and starts creating a new one if
more data is sent. When the last vertex of a polygon is received, a normal will
automatically be computed for the surface if IA3dGeom2::Normal wasn't used to
specify one. When sending multiple polygons inside a single begin/end block, each
group of vertices representing a polygon still has to be tagged with a unique ID, (by
using IA3dGeom2::Tag), if reflections are being used.
The polygons created inside a begin/end block inherit the acoustic properties of the
current material set by IA3dGeom2::BindMaterial. While it is possible to change the
material before each vertex is sent, the current material in effect when the last vertex of a
polygon is sent is the one that's applied to the entire polygon.
Only a subset of IA3dGeom2 methods can be used between IA3dGeom2::Begin and
IA3dGeom2::End. Valid methods are IA3dGeom2::Normal, IA3dGeom2::Vertex,
IA3dGeom2::BindMaterial, IA3dGeom2::Tag, IA3dGeom2::SetOpeningFactor,
IA3dGeom2::SetRenderMode, and all IA3dGeom2::Get methods.

&		������

IA3dGeom2::Normal
IA3dGeom2::Vertex
IA3dGeom2::SetOpeningFactor
IA3dGeom2::Tag

�

� � �0��

�

�0!�

"����	���335���2���	�	
�
Inserts the listener into the scene hierarchy.

�
�����	�

HRESULT BindListener(
void

);

��
��	�	
��

None.

 	��
��4���	��

S_OK

�	��
������

IA3dGeom2::BindListener applies the current matrix to the listener and transforms its
position, orientation and velocity. By default the listener has no transformations
associated with it so its properties are in absolute world space. When the listener is
bound to a matrix other than the identity matrix, its properties are in the coordinate
system defined by that matrix.
This method is useful when attaching the listener to moving geometry. Rather than
continually computing the world coordinates of the vertices for the object in which the
listener is traveling, the object could be specified in local coordinates and moved by
using IA3dGeom2::Translate and IA3dGeom2::Rotate. Binding the listener to the
matrix that is applied to the geometry will cause it to move with the object without the
application having to calculate its world location and orientation.
If IA3dGeom2::BindListener is being used, it should be called every frame to set the
listener matrix up.

�

� � �0$�

&		������

IA3dGeom2::BindSource
IA3dGeom2::PushMatrix
IA3dGeom2::PopMatrix
IA3dGeom2::Translate
IA3dGeom2::Rotate
IA3dGeom2::Scale
IA3dGeom2::LoadIdentity
IA3dGeom2::LoadMatrix
IA3dGeom2::MultMatrix
IA3dGeom2::GetMatrix

�

�0%�

"����	���335���*��	
����
Sets the current material.

�
�����	�

HRESULT BindMaterial(
LPA3DMATERIAL pMaterial

);

��
��	�	
��
pMaterial Pointer to a material.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

This method sets the current material in the geometry engine. All polygons sent after
IA3dGeom2::BindMaterial is called have the acoustic properties of that material. The
parameter pMaterial is a pointer to a material object created with
IA3dGeom2::NewMaterial.
Any number of materials can be bound in a frame, but a single polygon can only inherit
the properties of one material.
Changing the current material is a mode change, but the performance impact is very
small. However, each time a material is bound, it is stored in the frame buffer and takes
up a small amount of memory. To use materials efficiently, polygons should be ordered
so that those with the same material are sent to the geometry engine together, minimizing
mode changes and reducing the memory footprint of the frame buffer slightly. This is
only really significant when many hundreds of polygons are being rendered each frame.

&		������

IA3dGeom2::NewMaterial

�

� � �0'�

"����	���335���&��
�	�
Inserts a source into the scene hierarchy.

�
�����	�

HRESULT BindSource(
LPA3DSOURCE2 pSource

);

��
��	�	
��
pSource A pointer to a source.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

IA3dGeom2::BindSource applies the current matrix to the source pointed to by
pSource and transforms its position, orientation and velocity. By default a source has no
transformations associated with it so its properties are in absolute world space. When a
source is bound to a matrix other than the identity matrix, its properties are in the
coordinate system defined by that matrix.
This method is useful when attaching a source to moving geometry. Rather than
continually computing the world coordinates of the vertices for the object to which the
source is attached, the object could be specified in local coordinates and moved by using
IA3dGeom2::Translate and IA3dGeom2::Rotate. Binding the source to the matrix
that is applied to the geometry will cause it to move with the object without the
application having to calculate its world location and orientation. It also provides a
simple way of positioning a source relative to the listener by using the matrix functions
to position the listener and binding the source to the same matrix as the listener. When
this is done, the source methods IA3dSource2::SetPosition,
IA3dSource2::SetOrientation and IA3dSource2::SetVelocity are all relative to the
listener.
When the source is in head relative transformation mode, the matrix it is bound to is
relative to the listener. Using IA3dGeom2::BindSource in head relative mode is
equivalent to loading a matrix that specifies a coordinate system with its origin at the
listener, then multiplying in a source transformation matrix, and finally transforming the
position, orientation and velocity set explicitly by the source methods.
If IA3dGeom2::BindSource is being used it should be called every frame.

�

�0(�

&		������

IA3dGeom2::BindListener
IA3dGeom2::PushMatrix
IA3dGeom2::PopMatrix
IA3dGeom2::Translate
IA3dGeom2::Rotate
IA3dGeom2::Scale
IA3dGeom2::LoadIdentity
IA3dGeom2::LoadMatrix
IA3dGeom2::MultMatrix
IA3dGeom2::GetMatrix
IA3dSource2::Set/GetTransformMode

�

� � �0)�

"����	���33����,�	�
Globally disables a feature in the Wavetracing engine.

�
�����	�

HRESULT Disable(
DWORD dwFeature

);

��
��	�	
��
dwFeature dwFeature can be only one of the following:

A3D_OCCLUSIONS
A3D_1ST_REFLECTIONS

 	��
��4���	��

S_OK
A3DERROR_FEATURE_NOT_AVAILABLE
A3DERROR_A3D_NOT_INITIALIZED

�	��
������

IA3dGeom2::Disable disables various rendering features. When disabling a feature in
this manner, the feature is globally disabled - all geometry for the frame is affected no
matter at what point in the frame the method was called. To selectively disable rendering
features for different parts of the scene graph, use IA3dGeom2::SetRenderMode.
Features must be available and enabled before they can be disabled (see IA3d5::Init and
IA3dGeom2::Enable for details). dwFeature can be either A3D_OCCLUSIONS or
A3D_1ST_REFLECTIONS. Note that dwFeature is not a bitmask, but a single value.

&		������

IA3dGeom2::Enable
IA3dGeom2::IsEnabled
IA3d5::Init

�

��0�

"����	���33#��,�	�
Globally enables a feature in the Wavetracing engine.

�
�����	�

HRESULT Enable
DWORD dwFeature

);

��
��	�	
��
dwFeature dwFeature can be only one of the following:

A3D_OCCULSIONS
A3D_1ST_REFLECTIONS

 	��
��4���	��

S_OK
A3DERROR_FEATURE_NOT_AVAILABLE
A3DERROR_A3D_NOT_INITIALIZED

�	��
������

IA3dGeom2::Enable enables various rendering features. When enabling a feature in
this manner, the feature is globally enabled - all geometry for the frame is affected
irrespective of where in the frame the method was called. To selectively enable rendering
features for different parts of the scene graph, use IA3dGeom2::SetRenderMode.
Features must be available before they can be enabled. When initializing A3D,
IA3d5::Init tells the audio renderer what features it would like, and the renderer returns
which features it supports. Trying to enable a feature that isn't supported by the rendering
platform returns an error. dwFeature can be either A3D_OCCLUSIONS or
A3D_1ST_REFLECTIONS. Note that dwFeature is not a bitmask, but a single value.
By default, reflections and occlusions are disabled even if they were successfully
requested at initialize. They must be enabled using IA3dGeom2::Enable.

�

� � ����

&		������

IA3dGeom2::Disable
IA3dGeom2::IsEnabled
IA3dGeom2::Set/GetRenderMode
IA3d5::Init

�

����

"����	���33�	�*��
�7��
Gets the current matrix on the stack.

�
�����	�

HRESULT GetMatrix(
A3DMATRIX pA3dMatrix

);

��
��	�	
��
A3dMatrix The pointer to the matrix. The function fills in the data in the matrix

pointed to by A3dMatrix.

 	��
��4���	��

S_OK

�	��
������

IA3dGeom2::GetMatrix returns the current transformation matrix. See
IA3dGeom2::PushMatrix for an explanation of the matrix stack.

&		������

IA3dGeom2::LoadMatrix
IA3dGeom2::LoadIdentity
IA3dGeom2::Translate
IA3dGeom2::Rotate
IA3dGeom2::Scale
IA3dGeom2::MultMatrix

�

� � ����

"����	���33"�#��,�	��
Returns whether or not a feature is enabled in the Wavetracing engine.

�
�����	�

HRESULT IsEnabled(
DWORD dwFeature

);

��
��	�	
��
dwFeature dwFeature can be only one of the following:

A3D_OCCLUSIONS
A3D_1ST_REFLECTIONS

 	��
��4���	��
TRUE The feature is enabled.

FALSE The feature is not enabled.

�	��
������

Use IA3dGeom2::IsEnabled to check if a feature is enabled. The method returns TRUE
(1) if the feature queried is enabled, and FALSE (0) if it is not enabled. Note that
dwFeature is not a bitmask, but a value representing a single feature. See
IA3dGeom2::Enable.

&		������

IA3dGeom2::Enable
IA3dGeom2::Disable
IA3d5::Init

�

��!�

"����	���332���"�	�������
Loads an identity matrix onto the matrix stack.

�
�����	�

HRESULT LoadIdentity(
void

);

��
��	�	
��

None.

 	��
��4���	��

S_OK

�	��
������

IA3dGeom2::LoadIdentity replaces the current matrix with the identity matrix. It is
equivalent to calling IA3dGeom2::LoadMatrix with an identity matrix. In common
with all matrix methods, IA3dGeom2::LoadIdentity affects only data sent following
this call.

&		������

IA3dGeom2::LoadMatrix
IA3dGeom2::MultMatrix
IA3dGeom2::Translate
IA3dGeom2::Rotate
IA3dGeom2::Scale
IA3dGeom2::PushMatrix
IA3dGeom2::PopMatrix

�

� � ��$�

"����	���332���*��
�7��
Loads an arbitrary matrix onto the matrix stack.

�
�����	�

HRESULT LoadMatrix(
A3DMATRIX pA3dMatrix

);

��
��	�	
��
pA3dMatrix The pointer to the 4 × 4 matrix to be loaded. The function copies the

data to which the pointer is pointing.

 	��
��4���	��

S_OK

�	��
������

IA3dGeom2::LoadMatrix replaces the current matrix with the one pointed to by
pA3dMatrix. Use this method when an application is doing the math to compute
transformation matrices — it saves the Wavetracing engine from duplicating the work by
processing calls to IA3dGeom2::Translate, IA3dGeom2::Rotate, IA3dGeom2::Scale,
etc.
When reusing matrices computed by another engine, some care has to be taken to ensure
that the matrix conventions it uses are the same as in A3D, and that both are using the
same coordinate convention (right or left handed). A3D matrices, as in OpenGL, are
stored in column-major order as a one-dimensional array of floating-point numbers. That
is, the elements of the array are mapped on the matrix as follows:

�� �� �� ���

�� �� �� �	�

��
� ��� ���

	� �� ��� ���

�

��%�

&		������

IA3dGeom2::LoadIdentity
IA3dGeom2::Translate
IA3dGeom2::Rotate
IA3dGeom2::Scale
IA3dGeom2::MultMatrix
IA3dGeom2::PushMatrix
IA3dGeom2::PopMatrix
IA3d5::Set/GetCoordinateSystem

�

� � ��'�

"����	���33*���*��
�7��
Multiplies the current matrix by an arbitrary matrix.

�
�����	�

HRESULT MultMatrix(
A3DMATRIX pA3dMatrix

);

��
��	�	
��
pA3dMatrix Pointer to a 4 × 4 matrix.

 	��
��4���	��

S_OK

�	��
������

IA3dGeom2::MultMatrix multiplies the current matrix with the one specified in
pA3dMatrix. This replaces the current matrix, M, with M * pA3dMatrix. See
IA3dGeom2::LoadMatrix for more information on matrix operations.

&		������

IA3dGeom2::LoadIdentity
IA3dGeom2::Translate
IA3dGeom2::Rotate
IA3dGeom2::Scale
IA3dGeom2::LoadMatrix
IA3dGeom2::PushMatrix
IA3dGeom2::PopMatrix

�

��(�

"����	���33-	62�����
Creates a new list of geometry data.

�
�����	�

HRESULT NewList(
LPA3DLIST *ppList

);

��
��	�	
��
ppList The address of a list pointer. The function fills out the list pointer.

 	��
��4���	��

A3D_OK
A3DERROR_MEMORY_ERROR
A3DERROR_INVALID_ARGUMENT

�	��
������

A list is an object used to record a sequence of IA3dGeom2 methods.
IA3dGeom2::NewList is used to create a new list object and return a pointer to its
interface. Once a sequence of IA3dGeom2 methods has been stored in a list, that list can
be executed many times. Since the result of the IA3dGeom2 methods is stored rather
than the commands, executing a list is dramatically faster than sending the individual
methods that were used to create the list. A pointer to the transformed and packed data is
simply inserted into the frame buffer.
Any number of lists can be created and executed, though only one can be recorded at a
time. See the section on IA3dList for more details.

&		������

IA3dList::Release
IA3dList::Call
IA3dList::Begin, IA3dList::End

�

� � ��)�

"����	���33-	6*��	
����
Creates a new material.

�
�����	�

HRESULT NewMaterial(
LPA3DMATERIAL *ppMaterial

);

��
��	�	
��
ppMaterial The address of the material pointer. The function fills out the value of

the pointer.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

IA3dGeom2::NewMaterial creates a new acoustic material and returns a pointer to its
interface in ppMaterial. A material has reflectance and transmittance properties that
define how surfaces using the material reflect and transmit sound. By default, when a
material is created, it has properties that make it a perfect reflector and occluder.
Many materials can be created though only one is active at a time. See
IA3dGeom2::BindMaterial and the section on the IA3dMaterial interface for more
information on how materials are applied to the geometry in a scene.

&		������

IA3dGeom2::BindMaterial
IA3dMaterial::Release
IA3dMaterial::Set/GetReflectance
IA3dMaterial::Set/GetTransmittance

�

��0�

"����	���33-�
�����
Specifies the normal for a polygon.

�
�����	�

HRESULT Normal3f(
A3DVAL vx, A3DVAL vy, A3DVAL vz

);

HRESULT Normal3fv(
LPA3DVAL pxyz

);

��
��	�	
��
vx, vy, vx Three floating-point numbers specifying the normal vector to the

polygon.

pxyz A pointer to an array of 3 values which represent the vertex position.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

Use IA3dGeom2::Normal between IA3dGeom2::Begin and IA3dGeom2::End blocks
to send the normals for primitives to the Wavetracing engine. The normals are
transformed according to the current matrix on the stack. While this method can be
called before every call to IA3dGeom2::Vertex, acoustic surfaces are flat shaded. The
last normal to be sent is the one that will be applied to the entire polygon.
Using this method is not mandatory — if no normal is specified for a polygon, one is
computed automatically.

&		������

IA3dGeom2::Vertex

�

� � ����

"����	���33��*��
�7�
Pops a matrix off the matrix stack.

�
�����	��

HRESULT PopMatrix(
void

);

��
��	�	
��

None.

 	��
��4���	��

S_OK
E_FAIL

�	��
������

The Wavetracing geometry engine maintains a stack of 32 matrices for geometry
transformations. The current matrix is the matrix at the top of the stack and is the one
used to transform all geometry, source and listener data.
IA3dGeom2::PopMatrix pops the matrix stack up one by replacing the current matrix
with the one below it in the stack. This is used to restore the current matrix to the state it
was in when IA3dGeom2::PushMatrix was called.
An application should have an equal number of calls to IA3dGeom2::PushMatrix and
IA3dGeom2::PopMatrix. If IA3dGeom2::PopMatrix is called when the top of the
stack has already been reached the method will return an error.

&		������

IA3dGeom2::PushMatrix

�

����

"����	���33����*��
�7�
Pushes a matrix onto the matrix stack.

�
�����	�

HRESULT PushMatrix(
void

);

��
��	�	
��

None.

 	��
��4���	��

S_OK
E_FAIL

�	��
������

The Wavetracing geometry engine maintains a stack of 32 matrices for geometry
transformations. The current matrix is the matrix at the top of the stack and is the one
used to transform all geometry, source and listener data.
IA3dGeom2::PushMatrix copies the current matrix and pushes the stack down one.
This means the current matrix and the one immediately below it in the stack are
identical. This method is used to save the current matrix so that it can be modified by
other matrix methods then later restored with a call to IA3dGeom2::PopMatrix.
An application should have an equal number of calls to IA3dGeom2::PushMatrix and
IA3dGeom2::PopMatrix. If IA3dGeom2::PushMatrix is called when the stack is full
the method will return an error.

&		������

IA3dGeom2::PopMatrix

�

� � ����

"����	���338�	
�"��	
���	�
Returns an interface pointer for a supported interface.

�
�����	�

HRESULT QueryInterface(
REFIID iid,
LPVOID FAR *pInterface

);

��
��	�	
��
iid Interface identifier. Specify only IID_IA3dGeom2

pInterface Address of a pointer to an interface which will be filled out by the
method

 	��
��4���	��

S_OK
E_NOINTERFACE

�	��
������

All A3D interfaces inherit the IUnknown interface that contains a method called Query-
Interface. This method is used to let the application know what other interfaces a
particular interface supports, and to return a pointer to a requested interface if it is
supported. The different A3D interfaces support different interfaces.
The IA3dGeom2 interface doesn't support any other interfaces, so the only valid value
for iid is IID_IA3dGeom2 which will return another geometry interface pointer and
increment the reference count.
Calling any QueryInterface and asking for an interface that isn't supported will return
the error E_NOINTERFACE. The address of the pointer passed in to the method will be
left at the value it was set to by the calling method, so it may not be NULL. For this
reason, it is essential to check the return value of this method.

&		������

IA3dGeom2::AddRef
IA3dGeom2::Release

�

��!�

"����	���33 	�	��	�
Decrements the IA3dGeom2 reference count.

�
�����	�

ULONG Release(
void

);

��
��	�	
��
None.

 	��
��4���	��

Returns the new reference count.

�	��
������

When going through a COM method such as QueryInterface or NewSource to get an
interface pointer to a component, the reference count of the component is automatically
incremented. The reference count is used to let the component know when nothing is
accessing it anymore and that it can delete itself from memory.
Calling IA3dGeom2::Release decrements the reference count for the IA3dGeom2
interface, and if it is 0, the object deletes itself from memory.
Note that IA3d5, IA3dGeom2, and IA3dListener all share the same reference count as
they are simply different interfaces into the same base object. Only when all three have
been released will the reference count of any one of them be 0.
All A3D 3.0 interfaces inherit the COM IUnknown interface that contains the methods
AddRef, QueryInterface, and Release. Inside COM by Microsoft Press is an excellent
resource for detailed information on COM.

&		������

IA3dGeom2::AddRef
IA3dGeom2::QueryInterface

�

� � ��$�

"����	���33 ����	�
Applies a rotational transformation to the current matrix.

�
�����	�

HRESULT Rotate3f(
A3DVAL fAngle, A3DVAL fx, A3DVAL fy, A3DVAL fz

);

HRESULT Rotate3fv(
A3DVAL fAngle, LPA3DVAL fxyz

);

��
��	�	
��
fAngle Amount of angle to rotate in degrees.

fx, fy, fz Vector about which the rotation should be performed.

fxyz Pointer to an array of 3 values that represent the rotation axis.

 	��
��4���	��

S_OK

�	��
������

IA3dGeom2::Rotate applies a geometric transformation to the current matrix. It rotates
the current coordinate system counter-clockwise by fAngle degrees about the vector from
the origin to the point (fx, fy, fz). If M is the current matrix and R the matrix specified by
the rotation, the current matrix is replaced with M * R. All subsequent geometry, listener
and source data will be relative to this new coordinate system.
For azimuth rotations, the rotation vector is (0, 1, 0). Pitch (elevation) is a rotation about
(1, 0, 0) and roll a rotation about (0, 0, 1). The matrix for each of these three basic
rotations is computed slightly faster than the matrix for an arbitrary rotation axis.

�

��%�

&		������

IA3dGeom2::Translate
IA3dGeom2::Scale
IA3dGeom2::PopMatrix
IA3dGeom2::PushMatrix
IA3dGeom2::GetMatrix

�

� � ��'�

"����	���33&���	�
Applies a scale transformation to the current matrix.

�
�����	�

HRESULT Scale3f(
A3DVAL fx, A3DVAL fy, A3DVAL fz

);

HRESULT Scale3fv(
LPA3DVAL fxyz

);

��
��	�	
��
fx, fy, fx Scale factor for each axis.

fxyz A pointer to an array of 3 values which represent the x, y, and z scale
factors.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

IA3dGeom2::Scale applies a geometric transformation to the current matrix. It scales
the current coordinate system according to the values specified by (fx, fy, fz). If M is the
current matrix and S the matrix specified by the scaling, the current matrix is replaced
with M * S. All subsequent geometry, listener and source data will be relative to this new
coordinate system.

&		������

IA3dGeom2::GetMatrix
IA3dGeom2::PopMatrix
IA3dGeom2::PushMatrix
IA3dGeom2::Rotate
IA3dGeom2::Translate

�

��(�

"����	���33&	�9�	�;��������*��	�
Unsupported

�
�����	�

HRESULT SetOcclusionMode(
DWORD dwMode,

);

HRESULT GetOcclusionMode(
LPDWORD pdwMode,

);

��
��	�	
��
dwMode

 	��
��4���	��

A3DERROR_UNIMPLEMENTED_FUNCTION

�	��
������

None.

&		������

None.

� �

� � ��)�

"����	���33&	�9�	�;��������<���	"��	

.���

Sets the number of frames between occlusion processing.

�
�����	�

HRESULT SetReflectionUpdateInterval(
DWORD dwInterval

);

HRESULT GetReflectionUpdateInterval(
LPDWORD dwInterval

);

��
��	�	
��
dwInterval DWORD specifying the number of frames between updates

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

This method is used to spread occlusion processing over several frames, reducing the
load imposed on the CPU by the Wavetracing engine. It does this by reusing the same
occlusion factors for a source from the previous frame, bypassing all occlusion geometry
processing inside IA3d5::Flush.
dwInterval defaults to 1, which means occlusions are computed every frame. With
applications running faster than 30Hz, this can safely be set to 2 without any noticeable
difference in audio quality.
Occlusion processing is spread as evenly as possible over the update interval. For an
update interval of dwInterval, occlusions for 1/dwInterval sources will be computed each
frame. This is to help the application maintain a consistent frame rate.
The effect on audio quality at longer update intervals is much more noticeable than with
the reflection counterpart of this method. Whereas it is difficult to hear that a few
reflections aren't quite in the right place, it is very easy to notice that a sound is occluded
when it shouldn't be, especially if the object making the sound is visible. Because of this,
some care needs to be exercised when using long occlusion update intervals. Intervals
that represent update rates below 15 Hz should be avoided.

�

��0�

CPU usage of the Wavetracing engine is inversely proportional to the reflection and
occlusion update intervals.

&		������

IA3dGeom2::Set/GetReflectionUpdateInterval
IA3d5::Flush

� �

� � ����

"����	���33&	�;	����/����
�
Sets the opening factor for subfaces.

�
�����	�

HRESULT SetOpeningFactorf(
A3DVAL fFactor

);

HRESULT SetOpeningFactorfv(
LPA3DVAL pfFactor

);

��
��	�	
��
fFactor Floating point number which specifies the opening factor.

pfFactor Address of a floating point number.

 	��
��4���	��

S_OK

�	��
������

A subface is a polygon that is placed on top of a parent surface. It allows a transparency,
or opening factor to be applied to the region of the parent surface it covers. This provides
a simple means of putting doors or holes in large polygons without having to split the
parent polygon up into several smaller polygons.
IA3dGeom2::SetOpeningFactor is used to specify the transparency of the subface. 0.0
means the area the subface covers is completely closed and the material characteristics of
the parent polygon aren't modified. This is the default if this method isn't called. 1.0
means the area the subface covers is completely open or acoustically transparent. Values
in between apply linearly to the parent polygon material. This method should be called
before the first vertex of the subface it applies to is specified.
There are two implementations of this method. IA3dGeom2::SetOpeningFactorf can
be used with dynamic geometry (geometry not cached in an IA3dList) or for openings
that never change inside an IA3dList. This method takes the value of the opening factor
and applies it directly to the subface. IA3dGeom2::SetOpeningFactorfv takes the
address of a floating point number and performs exactly the same function as the other
method, except that the address of the variable is stored with the subface rather than the
explicit value. This is useful when caching geometry in lists since the opening factor can
still be changed even though geometry in lists can't otherwise be modified.

�

����

See IA3dGeom2::Begin for more information on subfaces.

&		������
IA3dGeom2::Begin
IA3dGeom2::End
IA3dGeom2::Vertex
IA3dList

� �

� � ����

"����	���33&	�9�	��������5����/����
�
Sets the reflection bloat factor for polygons.

�
�����	�

HRESULT SetPolygonBloatFactor(
A3DVAL fBloat

);

HRESULT GetPolygonBloatFactor(
LPA3DVAL fBloat

);

��
��	�	
��
fBloat Floating point, positive number specifying the bloat factor.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

This method can be used to scale individual polygons, affecting how they are considered
for reflection or occlusion processing. It is a global state of the Wavetracing engine, so
whatever value it is last set to is the value applied to all polygons in the frame buffer.
fBloat is the scale factor applied to all polygons and it can be any positive floating-point
number. The larger the number the more likely a polygon is to reflect or occlude a
source. The default of 1.0 represents no scaling.
The reflection location is not affected so the time delay is unchanged, but the amount of
reflection off the polygon is affected due to the change in its area of coverage.
This method is useful when the application is selectively disabling reflections or
occlusions for small polygons. To fill in for the greater number of polygons being
discarded for reflections or occlusions, bloating the polygons that are sent to the
Wavetracing engine helps recover much of the original scene.
IA3dGeom2::SetReflectionBloatFactor differs from the matrix operation
IA3dGeom2::Scale in that it scales polygons as if they have a local coordinate system.
The center point and plane equation are not modified.

�

��!�

&		������

IA3dGeom2::Scale

� �

� � ��$�

"����	���33&	�9�	� 	��	������	���&���
	�

Sets the delay scaling factor for reflections.

�
�����	�

HRESULT SetReflectionDelayScale(
A3DVAL fScale

);

HRESULT SetReflectionDelayScale(
LPA3DVAL fScale

);

��
��	�	
��
fScale Scale factor for reflection delays.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

This method globally scales all reflection delays by fScale. It can be used to exaggerate
the effect of reflections when fScale is greater that 1.0 (the default). fScale can be any
positive number, but reflection delays are still clamped at the value set in
IA3d5::SetMaxReflectionDelayTime, or the default of 0.3 seconds if that method
wasn't called.

&		������

IA3dGeom2::Set/GetReflectionGainScale
IA3dSource2::Set/GetReflectionDelayScale
IA3dSource2::Set/GetReflectionGainScale

�

��%�

"����	���33&	�9�	� 	��	���������&���	�
Sets the gain scaling factor for reflections

�
�����	�

HRESULT SetReflectionGainScale(
A3DVAL fScale

);

HRESULT GetReflectionGainScale(
LPA3DVAL fScale

);

��
��	�	
��
fScale Scale factor for reflection gains.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

A number of factors are taken into account when the Wavetracing engine computes gain
values for reflections: parent source gain setting, distance attenuation, and reflecting
surface material. IA3dGeom2::SetReflectionGainScale globally scales all reflection
gains by fScale. While fScale can be any positive number, final reflection gains are
clipped at 0 dB. The default value for this setting is 1.0.

&		������

IA3dGeom2::Set/GetReflectionDelayScale
IA3dSource2::Set/GetReflectionDelayScale
IA3dSource2::Set/GetReflectionGainScale

� �

� � ��'�

"����	���33&	�9�	� 	��	�����*��	�
Unsupported.

�
�����	�

HRESULT SetReflectionMode(
DWORD dwMode,

);

HRESULT GetReflectionMode(
LPDWORD pdwMode,

);

��
��	�	
��
dwMode

 	��
��4���	��

A3DERROR_UNIMPLEMENTED_FUNCTION

�	��
������

None.

&		������

None.

�

��(�

"����	���33&	�9�	� 	��	�����<���	"��
	
.���

Sets the number of frames between reflection processing.

�
�����	�

HRESULT SetReflectionUpdateInterval(
DWORD dwInterval

);

HRESULT GetReflectionUpdateInterval(
LPDWORD dwInterval

);

��
��	�	
��
dwInterval DWORD specifying the number of frames between updates.

 	��
��4���	��

S_OK
E_INVALIDARG

�	��
������

This method is used to spread reflection processing over several frames, reducing the
load imposed on the CPU by the Wavetracing engine. It does this by reusing the same
reflections for a source from the previous frame, bypassing all reflection geometry
processing inside IA3d5::Flush.
dwInterval defaults to 1, which means reflections are computed every frame. With
applications running faster than 30 Hz, this can safely be set to 2 or even 4 without any
noticeable difference in audio quality.
Reflection processing is spread as evenly as possible over the update interval. For an
update interval of dwInterval, reflections for 1/dwInterval sources will be computed each
frame. This is to help the application maintain a consistent frame rate.
CPU usage of the Wavetracing engine is inversely proportional to the reflection and
occlusion update intervals.

� �

� � ��)�

&		������

IA3dGeom2::Set/GetOcclusionUpdateInterval
IA3d5::Flush

�

�!0�

"����	���33&	�9�	� 	��	
*��	�
Sets the current render mode for polygon processing.

�
�����	�

HRESULT SetRenderMode(
DWORD dwMode

);

HRESULT GetRenderMode(
LPDWORD dwMode

);

��
��	�	
��
dwMode Specifies a bitmask containing the features to be enabled.

 	��
��4���	��

S_OK
E_INVALIDARG
A3DERROR_FEATURE_NOT_INITIALIZED

�	��
������

IA3dGeom2::SetRenderMode allows geometry rendering methods to be selectively
enabled or disabled during a frame. It differs from IA3dGeom2::Enable and
IA3dGeom2::Disable in that the modes it sets only affect geometry sent after the
method has been called and isn't globally applied to the entire frame buffer.
dwMode is a bitwise OR of the features to be enabled. It accepts the symbolic constants
A3D_OCCLUSIONS and A3D_1ST_REFLECTIONS. Features left out of dwMode will
be disabled. The default state is (A3D_OCCLUSIONS | A3D_1ST_REFLECTIONS).
This method is useful for selectively disabling reflections for some polygons while still
considering them for occlusions.
The absolute state of a feature in the Wavetracing engine is the AND of the state
specified by this method and the global state specified by IA3dGeom2::Enable and
IA3dGeom2::Disable. When each source is processed, the source render mode is
ANDed with this absolute state. In short, for a feature to be enabled at any time, it must
be globally enabled and it must be specified in the source and geometry rendering modes.

� �

� � �!��

&		������

IA3d5::Init
IA3dGeom2::Enable
IA3dGeom2::Disable
IA3dSource2::Set/GetRenderMode

�

�!��

"����	���33����
Tags the next polygon.

�
�����	�

HRESULT Tag(
DWORD dwTagID

);

��
��	�	
��
dwTagID

 	��
��4���	��

S_OK

�	��
������

This method is used to assign a unique 32 bit ID, dwTagID, to a polygon, allowing that
polygon to be identified by the Wavetracing engine from one frame to the next. This
facilitates smooth reflection blending between frames and removes the need to send
polygons in the same order every frame. Calling this method when rendering reflections
is mandatory - reflections can't be rendered for polygons that don't have an ID assigned
to them.
IA3dGeom2::Tag should be called before the vertices defining the primitive are sent
using IA3dGeom2::Vertex. Since multiple primitives can be sent inside a single
begin/end block, IA3dGeom2::Tag should be called before the first vertex and then
every n vertices, where n is the number of vertices in the primitive type being
constructed.
It is not necessary to call this method if only occlusion processing is required.

&		������
IA3dGeom2::Begin
IA3dGeom2::End
IA3dGeom2::Vertex
IA3d5::Init

� �

� � �!��

"����	���33�
������	��
Applies a translation to the current matrix.

�
�����	�

HRESULT Translate3f(
A3DVAL fx, A3DVAL fy, A3DVAL fz

);

HRESULT Translate3fv(
LPA3DVAL fxyz

);

��
��	�	
��
fx, fy, fx x, y and z components of a translation vector.

fxyz A pointer to an array of 3 values which specify a translation vector.

 	��
��4���	��

S_OK

�	��
������

IA3dGeom2::Translate applies a geometric transformation to the current matrix. It
moves the origin of the current coordinate system to the point (fx, fy, fz). If M is the
current matrix and T the matrix specified by the translation, the current matrix is
replaced with M * T. All subsequent geometry, listener and source data will be relative
to this new coordinate system.

&		������

IA3dGeom2::GetMatrix
IA3dGeom2::PopMatrix
IA3dGeom2::PushMatrix
IA3dGeom2::Rotate
IA3dGeom2::Scale

�

�!!�

"����	���334	
�	7�
Send vertex data for a primitive to the rendering engine.

�
�����	�

HRESULT Vertex3f(
A3DVAL fx, A3DVAL fy, A3DVAL fz

);

HRESULT Vertex3fv(
LPA3DVAL fxyz

);

��
��	�	
��
vx, vy, vx Position of the vertex.

pxyz A pointer to an array of 3 values which represent the vertex position.

 	��
��4���	��

S_OK

�	��
������

Use IA3dGeom2::Vertex between IA3dGeom2::Begin and IA3dGeom2::End blocks
to send primitive vertices to the Wavetracing engine. The vertices are transformed
according to the current matrix on the stack. See IA3dGeom2::Begin for more
information on primitive construction.

&		������
IA3dGeom2::Begin
IA3dGeom2::End
IA3dGeom2::Normal

� �

� � �!$�

"���2����"��	
���	�
A render list is a collection of geometry engine commands, recorded and stored in an IA3dList
for later execution. Sending the commands directly to the geometry engine results in host
processing while storing the commands in a render list and executing the list later eliminates
most of this processing.

For example, if you render a triangle using the geometry engine, you make five method calls:
Begin, Vertex, Vertex, Vertex, and End. These five calls result in the following processing:

! Each vertex is transformed by the current matrix on the stack.
! A normal is computed if it isn't sent by the application.
! Resulting polygon is created and stored in the final frame buffer.

If the geometry and transformation matrix don't change, then you can eliminate this processing
by storing the command sequence in a render list. Data is stored in the IA3dList exactly as it
would be in the final frame buffer so the cost of executing a list is very small — a single pointer
assignment, in fact. This still results in geometry being added to the final frame buffer, however,
so the polygons in the list still impact rendering time when occlusions or reflections are enabled.

Overall, lists provide the following advantages:
! Reduced computation time
! Clearer code

These advantages greatly outweigh the single disadvantage — lists are immutable. With one
exception, data in a list can never change. The exception to this rule is the opening factor applied
to a subface. This is stored as a pointer so that doors in static lists can be opened and closed
without regenerating the list.

<������� 	��	
�2����������#7���	�

You create a render list with the IA3dGeom2::NewList method, which returns a pointer to an
IA3dList interface. All IA3dGeom2 methods executed inside an
IA3dList::Begin/IA3dList::End block are executed and the results stored in the list in the order
they were issued. To add the geometry stored in the list to the frame buffer, use the
IA3dList::Call method.

�

�!%�

A simple example that creates four polygons 1 meter apart looks like this:
pA3dGeom->NewList(&pFourWalls);
pFourWalls->Begin();

pA3dGeom->LoadIdentity();
pA3dGeom->Translate3f(20.0f, 0.0f, -20.0f);
pA3dGeom->Rotate3f(30.0f, 0.0f, 1.0f, 0.0f);
for (nLoop = 0; nLoop < 4; nLoop++)
{

pA3dGeom->Begin(A3D_QUADS);
pA3dGeom->Tag(nLoop+1); /* never use a tag of 0 */
pA3dGeom->Vertex3f(-2.0f, 0.0f, ((float)nLoop*4.0f)-
2.0f);
pA3dGeom->Vertex3f(2.0f, 0.0f, ((float)nLoop*4.0f)-
2.0f);
pA3dGeom->Vertex3f(2.0f, 2.0f, ((float)nLoop*4.0f)-
2.0f);
pA3dGeom->Vertex3f(-2.0f, 2.0f, ((float)nLoop*4.0f)-
2.0f);

pA3dGeom->End();
}

pFourWalls->End();

To render the geometry later during the main Clear/Flush loop only requires this:
pFourWalls->Call();

Using a render list in this example has several advantages:
! Provides a convenient way for storing geometry in an object and giving that object a

useful name, it reduces the number of function calls issued during the frame update
! Eliminates all the transformation calculations that would be necessary such as building

the matrix, applying that matrix to each vertex, and computing a normal for each polygon
! Eliminates the cost of the math ((float)nLoop*4.0f)-2.0f. This is not a very expensive set

of instructions, perhaps, but this is a simple example.

� �

� � �!'�

"���2���33��� 	��
Increments the IA3dList reference count.

�
�����	�

ULONG AddRef(
void

);

��
��	�	
��
None.

 	��
��4���	��

Returns the new reference count.

�	��
������

When going through a COM method such as QueryInterface or NewSource to get an
interface pointer to a component, the reference count of the component is automatically
incremented. The reference count is used to let the component know when nothing is
accessing it anymore and that it can delete itself from memory.
Whenever an interface pointer is assigned to another interface pointer, the AddRef
method should be called to let the component know that two pointers are using the same
interface. Now when the Release method is called, the component won't delete itself
since it has been told something else is still using it. Consider the following example:

hr = pRoot->QueryInterface(IID_IBox, (void **)&pBox1);
if (SUCCEEDED(hr))
{

pBox1->DrawIt();
pBox2 = pBox1;
pBox2->AddRef();
pBox1->Release();

}

While pBox1 is now invalid because it has been released, pBox2 remains intact and can
still be used.
All A3D 3.0 interfaces inherit the COM IUnknown interface that contains the methods
AddRef, QueryInterface, and Release. Inside COM by Microsoft Press is an excellent
resource for detailed information on COM.

�

�!(�

&		������

IA3dList::QueryInterface
IA3dList::Release

� �

� � �!)�

"���2���335	���@�"���2���33#����
Record data in a render list.

�
�����	�

HRESULT Begin(
void

);

HRESULT End(
void

);

��
��	�	
��

None.

 	��
��4���	��
nNumPolygons Returns the number of polygons stored in the list.

E_FAIL

�	��
������

An IA3dList object is used to store a list of IA3dGeom2 commands. Between the calls
to IA3dList::Begin and IA3dList::End, calls to IA3dGeom2 methods are recorded and
stored in the list object in the order they were issued. That list of commands can be
executed later by calling IA3dList::Call. However, only one list can be recorded at a
time, and IA3dList::Call can't be used to execute another list inside a begin/end block.
Since it's the result of the sequence of commands that is stored rather than the commands
themselves, there are significant performance advantages to using lists. These are
discussed in the introduction to this section.
Lists can't be changed, so once IA3dList::End is called, the list will be stored as it is
until it is released. The single exception to the immutability of lists is with subfaces —
while the list is being recorded, if IA3dGeom2::SetOpeningFactorfv is used to set the
transparency of subfaces, that value can be modified dynamically since the address of the
opening factor variable is stored rather than its value.
Certain IA3dGeom2 methods are not recorded in the list object but instead are executed
immediately. These are: IA3dGeom2::Enable, IA3dGeom2::Disable,
IA3dGeom2::IsEnabled, IA3dGeom2::SetReflectionGainScale,
IA3dGeom2::SetReflectionDelayScale, IA3dGeom2::SetPolygonBloatFactor,
IA3dGeom2::SetReflectionUpdateInterval, IA3dGeom2::SetOcclusionUpdateInterval,

�

�$0�

IA3dGeom2::BindListener, IA3dGeom2::BindSource and all IA3dGeom2::Get*
methods.
See IA3dGeom2::NewList for more information on lists.

&		������

IA3dGeom2::NewList
IA3dList::Call

� �

� � �$��

"���2���33�����
Executes the sequence of commands stored in a list object.

�
�����	�

HRESULT Call(
void

);

��
��	�	
��

None.

 	��
��4���	��
nNumPolygons Returns the number of polygons executed by the list.

�	��
������

IA3dList::Call sends the result of executing all the commands stored in the list to the
Wavetracing engine. Geometry stored in the list object isn't modified by the current
matrix but instead is rendered exactly as it was recorded.

&		������
IA3dList::Begin
IA3dList::End
IA3dGeom2::NewList

�

�$��

"���2���33#��,�	5�������4���
Enables bounding box culling for a list.

�
�����	�

HRESULT EnableBoundingVol(
void

);

��
��	�	
��

None.

 	��
��4���	��

S_OK

�	��
������

IA3dList::EnableBoundingVol can be used to enable a bounding volume calculation
while the list is being recorded. This volume is used when IA3dList::Call is issued to
quickly determine if the geometry inside the list object should be considered for
occlusion processing or instead trivially rejected.
To make best use of this optimization, a list should be made up of cohesive geometry.
This allows the Wavetracing engine to quickly narrow down the polygons it needs to
consider for occlusion testing and can easily lead to a 10x increase in polygon
throughput.
If the number of polygons in the list is less than 5, this optimization is bypassed, as at
that point the test itself becomes a significant percentage of testing the individual
polygons.
Note that this feature is not enabled by default. This is to avoid doing the same checks an
application might do if it has its own list management routines.

&		������

IA3dGeom2::NewList
IA3dList::Begin
IA3dList::End

� �

� � �$��

"���2���338�	
�"��	
���	�
Returns an interface pointer for a supported interface.

�
�����	�

HRESULT QueryInterface(
REFIID iid,
LPVOID FAR *pInterface

);

��
��	�	
��
iid Interface identifier. Specify only IID_IA3dList.

pInterface Address of a pointer to an interface which will be filled out by the
method

 	��
��4���	��

S_OK
E_NOINTERFACE

�	��
������

All A3D interfaces inherit the IUnknown interface that contains a method called Query-
Interface. This method is used to let the application know what other interfaces a
particular interface supports, and to return a pointer to a requested interface if it is
supported. The different A3D interfaces support different interfaces.
The IA3dList interface doesn't support any other interfaces, so the only valid value for
iid is IID_IA3dListener which will return another list interface pointer and increment the
reference count.
Calling any QueryInterface and asking for an interface that isn't supported will return
the error E_NOINTERFACE. The address of the pointer passed in to the method will be
left at the value it was set to by the calling method, so it may not be NULL. For this
reason, it is essential to check the return value of this method.

&		������

IA3dList::AddRef
IA3dList::Release

�

�$!�

"���2���33 	�	��	�
Decrements the IA3dList reference count.

�
�����	�

ULONG Release(
void

);

��
��	�	
��
None.

 	��
��4���	��

Returns the new reference count.

�	��
������

When going through a COM method such as QueryInterface or NewSource to get an
interface pointer to a component, the reference count of the component is automatically
incremented. The reference count is used to let the component know when nothing is
accessing it anymore and that it can delete itself from memory.
Calling IA3dList::Release decrements the reference count for the IA3dList interface,
and if it is 0, the object deletes itself from memory.
All A3D 3.0 interfaces inherit the COM IUnknown interface that contains the methods
AddRef, QueryInterface, and Release. Inside COM by Microsoft Press is an excellent
resource for detailed information on COM.

&		������

IA3dList::AddRef
IA3dList::QueryInterface

� �

� � �$$�

"���*��	
����"��	
���	�
A material defines the acoustic properties of a surface — for example, a floor can be covered in
tile or carpet, a wall can have wallpaper, paint, or paneling, and so on. Both light and sound
behave differently depending on the material covering an object — light reflects sharply off of a
shiny tile surface as opposed to a thick gray carpet just as sound bounces off of tiled floors and is
absorbed by thick carpet on the floor. By specifying the properties of a material, you determine
how sound will interact with polygons rendered with that material.

To specify the properties of a material, define the following:
! Reflectance

If both the listener and the sound are on the same side of the polygon, how much sound
does the listener hear? You use the IA3dMaterial::Set/GetReflectance method to
provide this information.

! Transmittance
If the polygon is between the listener and the sound, how much sound does the listener
hear? You use the IA3dMaterial::Set/GetOcclusion to provide this information.

Each of these properties has two controls:
! Overall attenuation

Similar to the gain control on sources, this determines how much the entire signal is
attenuated.

! High-frequency content
Similar to the eq control on sources, this determines how much high frequencies are
attenuated.

Any number of materials can be created and applied to a scene.

<�����*��	
�����������#7���	�

You create a material with the IA3dGeom2::NewMaterial method, which returns a pointer to
an IA3dMaterial interface:

IA3dMaterial *pBrick;

IA3dMaterial *pCarpet;

�

�$%�

pIA3dGeom2->NewMaterial(&pBrick);
pIA3dGeom2->NewMaterial(&pCarpet);

With material objects now created, their acoustic properties can be specified:
pBrick->SetTransmittance(0.2f, 0.5f);
pBrick->SetRelfectance(0.9f, 0.8f);
pCarpet->SetTransmittance(0.95f, 0.6f);
pCarpet->SetReflectance(0.4f, 0.2f);

This is all that is required to fully define the materials and they are ready to be applied to
geometry. Inside the main IA3d5::Clear/IA3d5::Flush block, the current material is set by
issuing this instruction:

pIA3dGeom2->BindMaterial(pBrick);
pIA3dGeom2->Begin(A3D_QUADS);

pIA3dGeom2->Tag(1);
pIA3dGeom2->Vertex3fv(vert_1);
…

From this point on in the frame, all polygons sent have the properties of pBrick. Calling
IA3dGeom2::BindMaterial again with a different parameter will update the current material
which will be applied to the polygons sent after this call to the method. It doesn't change the
material properties of the polygons already sent.

If the properties of a material are modified, they don't take effect until
IA3dGeom2::BindMaterial is used to select the material, even if it is already the current
material when its properties are modified. Changing the current material does not change the
properties of polygons inside a list.

� �

� � �$'�

"���*��	
���33��� 	��
Increments the IA3dMaterial reference count.

�
�����	�

ULONG AddRef(
void

);

��
��	�	
��
None.

 	��
��4���	��

Returns the new reference count.

�	��
������

When going through a COM method such as QueryInterface or NewSource to get an
interface pointer to a component, the reference count of the component is automatically
incremented. The reference count is used to let the component know when nothing is
accessing it anymore and that it can delete itself from memory.
Whenever an interface pointer is assigned to another interface pointer, the AddRef
method should be called to let the component know that two pointers are using the same
interface. Now when the Release method is called, the component won't delete itself
since it has been told something else is still using it. Consider the following example:

hr = pRoot->QueryInterface(IID_IBox, (void **)&pBox1);
if (SUCCEEDED(hr))
{

pBox1->DrawIt();
pBox2 = pBox1;
pBox2->AddRef();
pBox1->Release();

}

While pBox1 is now invalid because it has been released, pBox2 remains intact and can
still be used.
All A3D 3.0 interfaces inherit the COM IUnknown interface which contains the
methods AddRef, QueryInterface, and Release. Inside COM by Microsoft Press is an
excellent resource for detailed information on COM.

�

�$(�

&		������

IA3dMaterial::QueryInterface
IA3dMaterial::Release

� �

� � �$)�

"���*��	
���33�������	�
Unsupported.

�
�����	�

HRESULT Duplicate(
LPA3DMATERIAL *ppMaterial

);

��
��	�	
��
ppMaterial

 	��
��4���	��

A3DERROR_UNIMPLEMENTED_FUNCTION

�	��
������

None.

&		������

None.

�

�%0�

"���*��	
���33�	�����	���
	�	��
Unsupported.

�
�����	�

HRESULT GetClosestPreset(
LPDWORD dwPreset

);

��
��	�	
��
dwPreset

 	��
��4���	��

A3DERROR_UNSUPPORTED_FUNCTION

�	��
������

None.

&		������

None.

� �

� � �%��

"���*��	
���332����
Unsupported.

�
�����	�

HRESULT Load(
LPSTR szFileName

);

��
��	�	
��
szFileName

 	��
��4���	��

A3DERROR_UNIMPLEMENTED_FUNCTION

�	��
������

None.

&		������

None.

�

�%��

"���*��	
���338�	
�"��	
���	�
Returns an interface pointer for a supported interface.

�
�����	�

HRESULT QueryInterface(
REFIID iid,
LPVOID FAR *pInterface

);

��
��	�	
��
iid Interface identifier. Specify only IID_IA3dMaterial.

pInterface Address of a pointer to an interface which will be filled out by the
method

 	��
��4���	��
S_OK
E_NOINTERFACE

�	��
������

All A3D interfaces inherit the IUnknown interface which contains a method called
QueryInterface. This method is used to let the application know what other interfaces a
particular interface supports, and to return a pointer to a requested interface if it is
supported. The different A3D interfaces support different interfaces.
The IA3dMaterial interface doesn't support any other interfaces, so the only valid value
for iid is IID_IA3dMaterial which will return another material interface pointer and
increment the reference count.
Calling any QueryInterface and asking for an interface that isn't supported will return
the error E_NOINTERFACE. The address of the pointer passed in to the method will be
left at the value it was set to by the calling method, so it may not be NULL. For this
reason, it is essential to check the return value of this method.

&		������

IA3dListener::AddRef
IA3dListener::Release

� �

� � �%��

"���*��	
���33 	�	��	�
Decrements the IA3dMaterial reference count.

�
�����	�

ULONG Release(
void

);

��
��	�	
��
None.

 	��
��4���	��

Returns the new reference count.

�	��
������

When going through a COM method such as QueryInterface or NewSource to get an
interface pointer to a component, the reference count of the component is automatically
incremented. The reference count is used to let the component know when nothing is
accessing it anymore and that it can delete itself from memory.
Calling IA3dMaterial::Release decrements the reference count for the IA3dMaterial
interface, and if it is 0, the object deletes itself from memory.
All A3D 3.0 interfaces inherit the COM IUnknown interface which contains the
methods AddRef, QueryInterface, and Release. Inside COM by Microsoft Press is an
excellent resource for detailed information on COM.

&		������

IA3dMaterial::AddRef
IA3dMaterial::QueryInterface

�

�%!�

"���*��	
���33&�.	�
Unsupported.

�
�����	�

HRESULT Save(
LPSTR szFilename

);

��
��	�	
��
szFileName

 	��
��4���	��

A3DERROR_UNIMPLEMENTED_FUNCTION

�	��
������

None.

&		������

None.

� �

� � �%$�

"���*��	
���33&	�	���
	�	��
Unsupported.

�
�����	�

HRESULT SelectPreset(
DWORD nMaterialEnum

);

��
��	�	
��
nMaterialEnum

 	��
��4���	��

A3DERROR_INVALID_ENUM_MATERIAL

�	��
������

None.

&		������

None.

�

�%%�

"���*��	
���33&	
����?	�
Unsupported.

�
�����	�

HRESULT Serialize(
LPVOID *ppMem
UINT *puiMemSize

);

��
��	�	
��
ppMem
puiMemSize

 	��
��4���	��

A3DERROR_UNIMPLEMENTED_FUNCTION

�	��
������

None.

&		������

None.

� �

� � �%'�

"���*��	
���33&	�9�	�-��	"��
Sets and gets the name ID of the material.

�
�����	�

HRESULT SetNameID(
LPSTR szNameBuff

);

HRESULT GetNameID(
LPSTR szNameBuff,
INT nNameBuffLen

);

��
��	�	
��
szNameBuff Pointer to the buffer to receive the name data.

nNameBuffLen Length of the name buffer to receive the name.

 	��
��4���	��

S_OK
A3DERROR_INVALID_ARGUMENT
A3DERROR_INSUFFICIENT_BUFFERSIZE

�	��
������

This method is used to assign a text name to a material.

&		������

None.

�

�%(�

"���*��	
���33&	�9�	� 	��	�����	�
Sets the reflectance of a material.

�
�����	�

HRESULT SetReflectance(
A3DVAL fGain,
A3DVAL fHighFreq

);

HRESULT GetReflectance(
LPA3DVAL fGain,
LPA3DVAL fHighFreq

);

��
��	�	
��
fGain A floating point number between 0.0 and 1.0.

fHighFreq A floating point number between 0.0 and 1.0.

 	��
��4���	��

A3D_OK
A3DERROR_INVALID_ARGUMENTS
A3DERROR_INPUTS_OUT_OF_RANGE

�	��
������

This method is used to specify the reflectance properties of a material. The values set by
this method determine how a sound will reflect off a polygon. Broadband and high
frequency characteristics can be controlled independently.
fGain specifies the overall signal attenuation, much like IA3dSource2::SetGain, with
1.0 meaning sound is reflected off the material unaffected and 0.0 meaning no sound is
reflected. fHighFreq specifies the level of high frequencies reflected off the material and
its effect is similar to IA3dSource2::SetEq. 1.0 means high frequencies are unaffected
and 0.0 means they will be completely attenuated. If either parameter is 0.0, no sound
will be reflected since attenuating high frequencies to that degree virtually eliminates the
entire sound.
Updates to the properties of a material don't take effect until
IA3dGeom2::BindMaterial is called, even if the material being modified is already the
current material.

� �

� � �%)�

The following table shows some example values for the two parameters for a few
materials:

Table 7. %.	&
���!	����	��"� ����	����
Material fGain fHighFreq
Carpet 0.4 0.2

Wood 0.9 0.9

Brick 0.9 0.8

Glass 1.0 1.0

&		������

IA3dGeom2::NewMaterial

�

�'0�

"���*��	
���33&	�9�	��
����������	�
Sets the transmittance of a material.

�
�����	�

HRESULT SetTransmittance(
A3DVAL fGain,
A3DVAL fHighFreq

);

HRESULT GetTransmittance(
LPA3DVAL fGain,
LPA3DVAL fHighFreq

);

��
��	�	
��
fAmount A floating point number between 0.0 and 1.0.

fHighFreq A floating point number between 0.0 and 1.0.

 	��
��4���	��

A3D_OK
A3DERROR_INVALID_ARGUMENTS
A3DERROR_INPUTS_OUT_OF_RANGE

�	��
������

This method is used to specify the transmittance properties of a material. The values set
by this method determine how a sound will travel from one side of a polygon to the
other. Broadband and high frequency characteristics can be controlled independently.
fGain specifies the overall signal attenuation, much like IA3dSource2::SetGain, with
1.0 meaning sound is transmitted through the material unaffected and 0.0 meaning no
sound is transmitted. fHighFreq specifies the level of high frequencies transmitted
through the material and its effect is similar to IA3dSource2::SetEq. 1.0 means high
frequencies are unaffected and 0.0 means they will be attenuated completely. If either
parameter is 0.0, no sound will be transmitted since attenuating high frequencies to that
degree virtually eliminates the entire sound.
Updates to the properties of a material don't take effect until
IA3dGeom2::BindMaterial is called, even if the material being modified is already the
current material.

� �

� � �'��

The following table shows some example values for the two parameters for a few
materials:

Table 8. %.	&
���!	����	����	��&���	����
Material fGain fHighFreq
Carpet 0.95 0.60

Wood 0.50 0.50

Brick 0.20 0.50

Water 1.00 0.30

&		������

IA3dGeom2::NewMaterial

�

�'��

"���*��	
���33<�&	
����?	�
Unsupported.

�
�����	�

HRESULT UnSerialize(
LPVOID pMem
UINT uiMemSize

);

��
��	�	
��
pMem
uiMemSize

 	��
��4���	��

A3DERROR_UNIMPLEMENTED_FUNCTION

�	��
������

None.

&		������

None.

�� �

� � �

����.�

3

3D room acoustics.. 3
3D sources.. 56, 118

A

A2D.. 3
A3D.. 2
A3D API .. 4
A3D API engine ... 17
A3D API library... 8
A3D data path .. 8
A3D engine .. 4
A3D geometry engine....................................... 5
A3D interface hierarchy 11
A3D rendering engine 5
A3D_REVERB_PRESET............................ 115
A3dApi COM class .. 7
a3dapi.dll.. 17
A3DCAPS_SOURCE 176
A3DENUMCALLBACK............................... 89
A3dEnumerate.. 36
A3DREVERB_CUSTOM............................ 113
A3DREVERB_PRESET.............................. 115
A3DREVERB_PROPERTIES..................... 116
A3DSOURCE_FORMAT_AC3 130, 176
A3DSOURCE_FORMAT_MP3 130, 176
A3DSOURCE_FORMAT_WAVE ... 130, 176
A3DSOURCE_MP3INFO 177
A3DSOURCE_WAVEFORMAT................ 178
A3DVOLSRCDAMPINFO.......................... 179
AC-3... 23, 88, 176
acoustic properties, specifying 256
activity status.. 126
adding scene heirarchy 198
AddRef 37, 92, 103, 119, 186, 199, 247, 257
AllocateWaveData 121
API library.. 8
architecture overview 7
attaching wave data to sources 118

attenuation curve .. 142
audibility... 80, 124, 142
Aureal Wavetracing.. 4

B

Begin .. 201, 249
binaural... 2
binding material.. 206
BindListener ... 204
BindMaterial .. 206
BindReverb .. 39
BindSource... 207
bloat factor ... 233

C

Call ... 251
Cartesian coordinate system 4
Clear ... 40
clearing wave events..................................... 122
ClearWaveEvents ... 122
CoCreateInstance ... 7
COM server .. 7
Compat ... 41
cone .. 140
coordinate system... 5
CPU usage .. 20
creating a material .. 255
creating material ... 219
creating sources .. 118

D

data ... 18
Debug Viewer... 42
defining materials ... 256
delay, reflections scaling 235
direct path... 19, 33
DirectSound3D... 3
Disable.. 209
DISABLE_FOCUS_MUTE......... 50, 51, 52, 53
DisableViewer .. 42

�

distance model.. 146
Doppler effect .. 143
double buffering ... 40
Duplicate .. 259
DuplicateSource ... 43
dynamic geometry .. 231

E

Enable .. 210
EnableBoundingVol 252
End ... 201, 249
Euclidean geometry.. 65

F

filtering... 6
first order reflections 19
Flush... 7, 8, 44
focus ... 51, 53, 63
format, wave data ... 138
frames, updating 229, 238
FreeWaveData.. 123
frequency variation... 3

G

gain, reflections .. 236
geometry data lists.. 218
geometry engine 5, 197
GetAudibility.. 124
GetAudioSize ... 128
GetClosestPreset .. 260
GetHardwareCaps .. 46
GetMatrix ... 212
GetOcclusionFactor...................................... 125
GetSoftwareCaps.. 48
GetStatus .. 126
GetType.. 127
goal of the A3D.. 2

H

Head Related Transfer Functions 2
high-frequency content 255
HRTF ... 2

I

IA3d5 ... 7, 12

IA3d5 interface ... 34
IA3dGeom2 .. 14
IA3dGeom2 interface 198
IA3dList... 15
IA3dList interface 245
IA3dListener 12, 13
IA3dListener interface.................................... 90
IA3dMaterial ... 15
IA3dmaterial interface.................................. 255
IA3dReverb interface 102
IA3dSource2 ... 13
IA3dSource2 interface 118
identity matrix .. 214
Init .. 7, 50
InitEx.. 52
inserting listener ... 204
interface hierarchy.. 11
IsEnabled.. 213
IsFeatureAvailable.. 54

L

left-handed co-ordinate system................... 4, 65
listener .. 90

binding, listener
inserting.. 204

listener orientation.. 90
listener positon ... 90
listener velocity .. 91
lists ... 218, 245
Load ... 261
LoadIdentity ... 214
loading wave data ... 129
LoadMatrix... 215
LoadWaveData... 129
LoadWaveFile .. 130
Lock.. 131
LPGUID ... 50, 53

M

master volume control 76
material... 18, 255
material reflectance 255
material transmittance................................... 255
material, acoustic properties......................... 256
material, binding... 206

�� �

� � �

material, creating.................................. 219, 255
materials

defining .. 256
name ID.. 267
reflectance .. 268
transmittance .. 270

matrices 198, 212, 214, 215, 217
scaling .. 227
translation... 243

matrices, rotating.. 225
matrix stack .. 212
matrix stack, popping 221
matrix stack, pushing.................................... 222
memory, source wave data 128
MP3.. 176, 177
MultMatrix ... 217

N

name ID, materials 267
NewList .. 218
NewMaterial... 219
NewReverb... 55
NewSource ... 56
Normal ... 220

O

occlusion .. 19
occlusion factor .. 125
occlusions, updating 229
OpenGL.. 4
opening factors ... 231
orienting the listener....................................... 90
overall attenuation.. 255

P

pan values... 152
panning... 118
phase .. 3
pitch.. 154
Play .. 133
playback cursor 137, 155, 156
playing a source.. 118
playing wave data... 118
polygon complexity.. 20
polygons, bloat factor................................... 233

polygons, normal .. 220
polygons, tagging ... 242
PopMatrix... 221
positional 3D audio .. 3
positional sound.. 2
positioning sources 157
positioning the listener 90
primitives.. 201
primitives, vertices 244
priority.. 80
priority of sources... 158
processing mode ... 161
psychoacoustic.. 2
PushMatrix ... 222

Q

QueryInterface7, 12, 13, 14, 15, 16, 22, 24, 26,
28, 29, 31, 32, 37, 38, 58, 59, 62, 90, 92, 93,
94, 95, 104, 105, 106, 119, 120, 135, 136,
181, 183, 186, 187, 190, 193, 198, 199, 200,
223, 224, 247, 248, 253, 254, 257, 258, 262,
263

R

reflectance .. 219, 255
attenuation .. 268
materials ... 268

reflections ... 19
reflections, bloat factor................................. 233
reflections, delay scaling 235
reflections, gain scaling 236
reflections, updating 238
RegisterApp.. 60
RegisterVersion.. 61
Release 62, 95, 106, 136, 193, 224, 254, 263
render list ... 245
render list, begin... 249
render list, end .. 249
render mode.. 161, 240
rendering engine ... 5
rendering features 209, 210
rendering mode... 18
resource manager.. 8
resource manager algorithm 80
ReverbProperties .. 116

�

Rewind ... 137
right-handed co-ordinate system 4, 65
room acoustics.. 3
root interface .. 11, 34
Rotate ... 225

S

Save.. 264
Scale ... 227
scaling reflections delay 235
scene heirarching, adding 198
SelectPreset .. 265
sending vertex data....................................... 244
Serialize.. 266
Set/GetAllProperties 107
Set/GetAudioFormat 138
Set/GetCone ... 140
Set/GetCooperativeLevel 63
Set/GetCoordinateSystem............................... 65
Set/GetDistanceModelScale................... 67, 142
Set/GetDopplerScale 69, 143
Set/GetEq ... 71, 144
Set/GetGain.. 145
Set/GetMaxReflectionDelayTime 73
Set/GetMinMaxDistance 146
Set/GetNameID .. 267
Set/GetNumFallbackSources.......................... 75
Set/GetOcclusionMode 228
Set/GetOcclusionUpdateInterval.................. 229
Set/GetOrientation.................................. 96, 148
Set/GetOrientationAngles....................... 98, 150
Set/GetOutputGain ... 76
Set/GetOutputMode 77
Set/GetPanValues... 152
Set/GetPitch ... 154
Set/GetPlayPosition...................................... 155
Set/GetPlayTime .. 156
Set/GetPolygonBloatFactor.......................... 233
Set/GetPosition..................................... 100, 157
Set/GetPresetDamping 108
Set/GetPresetDecayTime.............................. 109
Set/GetPresetVolume 110
Set/GetPriority.. 158
Set/GetReflectance 268
Set/GetReflectionDelayScale 235

Set/GetReflectionGainScale 236
Set/GetReflectionMode 237
Set/GetReflectionUpdateInterval.................. 238
Set/GetRenderMode 161, 240
Set/GetReverbMix.. 163
Set/GetReverbPreset..................................... 111
Set/GetRMPriorityBias 80
Set/GetStreamingProperties 82
Set/GetTransformMode................................ 165
Set/GetTransmittance 270
Set/GetUnitsPerMeter 84
Set/GetVelocity 101, 167
Set/GetVolumetricBounds............................ 168
Set/GetVolumetricDamping 170
SetMaxHardwareSources 86
SetOpeningFactor... 231
SetPlayEvent .. 172
SetReflectionDelayScale 159
SetReflectionGainScale................................ 160
setting listener orientation 90
Shutdown.. 87
source audibility ... 142
source, attaching wave data 118
sources

activity status .. 126
audibility... 124
binding, inserting sources 207
cone .. 140
inserting.. 207
location... 157
occlusion factor .. 125
pan values... 152
pitch.. 154
wave data memory.................................... 128

sources priority... 158
sources velocity .. 167
sources, creating ... 118
sources, playing .. 118
specifying acoustic properties 256
states... 18
status... 126
stereo sources ... 56, 118
Stop .. 174
subfaces .. 201, 231
synchronization .. 44

�� �

� � �

synchronized sound .. 3

T

Tag ... 242
tagging polygons .. 242
time lag... 3
transform mode .. 165
transformation matrix 18, 212
transformations, rotation 225
transformations, scaling................................ 227
Translate... 243
translations ... 243
transmittance .. 219, 255

attenuation .. 270
high frequencies 270
materials ... 270

transparency factor 231

U

Unlock.. 175
UnlockFallbackAC3Decoder 88
UnSerialize... 272
updating frames 229, 238
updating occlusions 229

V

velocity of sources.. 167

velocity of the listener 91
Vertex... 244
vertex data, sending...................................... 244
video geometry... 20
volume, bounding calculation....................... 252
Vortex audio hardware 2

W

wave data.. 118
source memory ... 128

wave data events... 172
wave data format .. 138
wave data, loading.. 129
wave data, playing .. 118
wave events, clearing.................................... 122
Wavetracing ... 2, 4

CPU usage .. 20
Wavetracing algorithms.................................. 19

X

x-axis .. 4

Y

y-axis .. 4

Z

z-axis .. 4

